From the Program in Physiology and Experimental Medicine, SickKids Research Institute, Toronto, Ontario, Canada (C.Y., N.P., G.O., M.A.K., M.P., K.T., R.B., A.M., D.E., B.P.K.); Department of Laboratory Medicine and Pathobiology (C.Y., N.P., M.P.), Department of Anesthesia (B.P.K.), Department of Pediatrics (M.P., K.T.), Department of Physiology (M.P., W.M.K., K.T., A.M., B.P.K.), and Institute of Medical Sciences (N.P., W.M.K.), University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada (W.M.K.); and Department of Critical Care, Hospital for Sick Children, Toronto, Ontario, Canada (B.P.K.).
Anesthesiology. 2015 Apr;122(4):864-75. doi: 10.1097/ALN.0000000000000605.
Mechanical ventilation can injure the lung and induce a proinflammatory state; such ventilator-induced lung injury (VILI) is associated with neutrophil influx. Neutrophils release DNA and granular proteins as cytotoxic neutrophil extracellular traps (NETs). The authors hypothesized that NETs were produced in a VILI model and may contribute to injury.
In a two-hit lipopolysaccharide/VILI mouse model with and without intratracheal deoxyribonuclease (DNase) treatment or blockade of known inducers of NET formation (NETosis), the authors assessed compliance, bronchoalveolar lavage fluid protein, markers of NETs (citrullinated histone-3 and DNA), and markers of inflammation.
Although lipopolysaccharide recruited neutrophils to airways, the addition of high tidal mechanical ventilation was required for significant induction of NETs markers (e.g., bronchoalveolar lavage fluid DNA: 0.4 ± 0.07 µg/ml [mean ± SEM], P < 0.05 vs. all others, n = 10 per group). High tidal volume mechanical ventilation increased airway high-mobility group box 1 protein (0.91 ± 0.138 vs. 0.60 ± 0.095) and interleukin-1β in lipopolysaccharide-treated mice (22.4 ± 0.87 vs. 17.0 ± 0.50 pg/ml, P < 0.001) and tended to increase monocyte chemoattractant protein-1 and interleukin-6. Intratracheal DNase treatment reduced NET markers (bronchoalveolar lavage fluid DNA: 0.23 ± 0.038 vs. 0.88 ± 0.135 µg/ml, P < 0.001; citrullinated histone-3: 443 ± 170 vs. 1,824 ± 403, P < 0.01, n = 8 to 10) and attenuated the loss of static compliance (0.9 ± 0.14 vs. 1.58 ± 0.17 ml/mmHg, P < 0.01, n = 19 to 20) without significantly impacting other measures of injury. Blockade of high-mobility group box 1 (with glycyrrhizin) or interleukin-1β (with anakinra) did not prevent NETosis or protect against injury.
NETosis was induced in VILI, and DNase treatment eliminated NETs. In contrast to experimental transfusion-related acute lung injury, NETs do not play a major pathogenic role in the current model of VILI.
机械通气可损伤肺部并引发促炎状态;这种呼吸机引起的肺损伤(VILI)与中性粒细胞浸润有关。中性粒细胞释放 DNA 和颗粒蛋白作为细胞毒性中性粒细胞细胞外陷阱(NETs)。作者假设 VILI 模型中产生了 NETs,并且可能导致损伤。
在具有和不具有气管内脱氧核糖核酸酶(DNase)治疗或已知 NET 形成诱导物(NETosis)阻断的脂多糖/VILI 小鼠两击模型中,作者评估了顺应性、支气管肺泡灌洗液蛋白、NET 标志物(瓜氨酸化组蛋白-3 和 DNA)和炎症标志物。
尽管脂多糖募集了气道中的中性粒细胞,但需要高潮气量机械通气才能显著诱导 NET 标志物(例如,支气管肺泡灌洗液 DNA:0.4±0.07μg/ml[均值±SEM],P<0.05 与所有其他组相比,每组 10 只)。高潮气量机械通气增加了气道高迁移率族蛋白 1 蛋白(0.91±0.138 与 0.60±0.095)和脂多糖处理小鼠中的白细胞介素 1β(22.4±0.87 与 17.0±0.50 pg/ml,P<0.001),并趋于增加单核细胞趋化蛋白-1 和白细胞介素 6。气管内 DNase 治疗降低了 NET 标志物(支气管肺泡灌洗液 DNA:0.23±0.038 与 0.88±0.135μg/ml,P<0.001;瓜氨酸化组蛋白-3:443±170 与 1824±403,P<0.01,每组 8 至 10 只)并减轻了静态顺应性的丧失(0.9±0.14 与 1.58±0.17 ml/mmHg,P<0.01,每组 19 至 20 只),但对其他损伤测量没有明显影响。高迁移率族蛋白 1(用甘草甜素)或白细胞介素 1β(用 anakinra)的阻断均未阻止 NETosis 或防止损伤。
VILI 中诱导了 NETosis,DNase 治疗消除了 NETs。与实验性输血相关的急性肺损伤不同,在当前的 VILI 模型中,NETs 并没有发挥主要的致病作用。