Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Wiener Str. 12, 28359 Bremen, Germany ; Department of Physics, Energy and Semiconductor Research Laboratory, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany.
Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Wiener Str. 12, 28359 Bremen, Germany.
Beilstein J Nanotechnol. 2015 Jan 6;6:47-59. doi: 10.3762/bjnano.6.6. eCollection 2015.
Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mn (x) (+) oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure-property relationships. The oxidation process related to the different MnO x species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnO x species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnO x species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.
氧化锰是储能科学中最重要的材料之一。为了充分发挥其应用潜力,需要精确控制其性质,如粒径、比表面积和 Mn(x)(+)氧化态。在这里,通过基于多元醇合成的经济路线获得的 Mn(II) 乙二醇酸盐纳米粒子的煅烧,合成了 Mn3O4 和 Mn5O8 纳米粒子以及介孔 α-Mn2O3 颗粒。通过一条路线制备不同的氧化锰,有利于确定实际的结构-性能关系。通过原位 X 射线衍射(XRD)测量观察到与不同 MnO x 物种相关的氧化过程,表明在 O2 气氛中,Mn(II) 乙二醇酸盐前体通过 Mn3O4 和 Mn5O8 氧化为 α-Mn2O3 时,在氧化过程中发生了与时间和温度有关的相转变。使用透射电子显微镜(TEM)和粉末 XRD 进行的详细结构和形态研究表明,MnO x 物种的晶格常数和粒径取决于煅烧温度以及存在氧化性或中性气氛。此外,为了证明所合成的 MnO x 物种的应用潜力,我们研究了它们在非质子介质中对氧还原反应的催化活性。线性扫描伏安法显示介孔 α-Mn2O3 物种的性能最佳。