Suppr超能文献

鉴定金属氧化物电催化剂的活性表面相:用于氧还原和水氧化催化的氧化锰双功能催化剂的研究。

Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.

机构信息

Center for Atomic-Scale Materials Design (CAMD), Department of Physics, DTU, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.

出版信息

Phys Chem Chem Phys. 2012 Oct 28;14(40):14010-22. doi: 10.1039/c2cp40841d. Epub 2012 Sep 18.

Abstract

Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn(2)O(3) and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V and 1.0 V, a potential region between the ORR and the OER relevant conditions. Next, we perform density function theory (DFT) calculations to understand the changes in the MnO(x) surface as a function of potential and to elucidate reaction mechanisms that lead to high activities observed in the experiments. Using DFT, we construct surface Pourbaix and free energy diagrams of three different MnO(x) surfaces and identify 1/2 ML HO* covered Mn(2)O(3) and O* covered MnO(2), as the active surfaces for the ORR and the OER, respectively. Additionally, we find that the ORR occurs through an associative mechanism and that its overpotential is highly dependent on the stabilization of intermediates through hydrogen bonds with water molecules. We also determine that OER occurs through direct recombination mechanism and that its major source of overpotential is the scaling relationship between HOO* and HO* surface intermediates. Using a previously developed Sabatier model we show that the theoretical predictions of catalytic activities match the experimentally determined onset potentials for the ORR and the OER, both qualitatively and quantitatively. Consequently, the combination of first-principles theoretical analysis and experimental methods offers an understanding of manganese oxide oxygen electrocatalysis at the atomic level, achieving fundamental insight that can potentially be used to design and develop improved electrocatalysts for the ORR and the OER and other important reactions of technological interest.

摘要

电催化领域的进展常常受到在电极表面识别活性位的困难所阻碍。在此,我们结合理论分析和电化学方法,来识别用于氧还原反应 (ORR) 和氧析出反应 (OER) 的锰氧化物双功能催化剂中的活性表面。首先,我们对纳米结构的 α-Mn(2)O(3) 进行电化学表征,发现其在两个电位区域发生氧化:最初在 0.5 V 和 0.8 V 之间,这个电位区域与 ORR 相关,随后在 0.8 V 和 1.0 V 之间,这个电位区域在 ORR 和 OER 相关条件之间。接下来,我们进行密度泛函理论 (DFT) 计算,以了解 MnO(x) 表面随电位的变化,并阐明导致实验中观察到高活性的反应机制。使用 DFT,我们构建了三种不同的 MnO(x) 表面的表面 Pourbaix 和自由能图,并确定了 1/2 ML HO* 覆盖的 Mn(2)O(3) 和 O* 覆盖的 MnO(2) 分别为 ORR 和 OER 的活性表面。此外,我们发现 ORR 通过缔合机制发生,其过电位高度依赖于通过氢键与水分子稳定中间体。我们还确定 OER 通过直接重组机制发生,其过电位的主要来源是 HOO* 和 HO* 表面中间体之间的比例关系。使用之前开发的 Sabatier 模型,我们表明理论预测的催化活性与实验确定的 ORR 和 OER 的起始电位在定性和定量上都匹配。因此,第一性原理理论分析和实验方法的结合提供了对锰氧化物氧电催化的原子水平的理解,实现了潜在可用于设计和开发用于 ORR 和 OER 以及其他重要技术相关反应的改进电催化剂的基础见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验