Suppr超能文献

克氏锥虫在其传播媒介体内的增殖和分化有了一个新的触发因素:氧化还原状态。

Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status.

作者信息

Nogueira Natália P, Saraiva Francis M S, Sultano Pedro E, Cunha Paula R B B, Laranja Gustavo A T, Justo Graça A, Sabino Kátia C C, Coelho Marsen G P, Rossini Ana, Atella Georgia C, Paes Marcia C

机构信息

Laboratório de Interação Tripanossomatídeos e Vetores-Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brasil.

Laboratório de Bioquímica de Lipídeos e Lipoproteínas-Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro (UFRJ)-Rio de Janeiro, Brasil.

出版信息

PLoS One. 2015 Feb 11;10(2):e0116712. doi: 10.1371/journal.pone.0116712. eCollection 2015.

Abstract

Trypanosoma cruzi proliferate and differentiate inside different compartments of triatomines gut that is the first environment encountered by T. cruzi. Due to its complex life cycle, the parasite is constantly exposed to reactive oxygen species (ROS). We tested the influence of the pro-oxidant molecules H2O2 and the superoxide generator, Paraquat, as well as, metabolism products of the vector, with distinct redox status, in the proliferation and metacyclogenesis. These molecules are heme, hemozoin and urate. We also tested the antioxidants NAC and GSH. Heme induced the proliferation of epimastigotes and impaired the metacyclogenesis. β-hematin, did not affect epimastigote proliferation but decreased parasite differentiation. Conversely, we show that urate, GSH and NAC dramatically impaired epimastigote proliferation and during metacyclogenesis, NAC and urate induced a significant increment of trypomastigotes and decreased the percentage of epimastigotes. We also quantified the parasite loads in the anterior and posterior midguts and in the rectum of the vector by qPCR. The treatment with the antioxidants increased the parasite loads in all midgut sections analyzed. In vivo, the group of vectors fed with reduced molecules showed an increment of trypomastigotes and decreased epimastigotes when analyzed by differential counting. Heme stimulated proliferation by increasing the cell number in the S and G2/M phases, whereas NAC arrested epimastigotes in G1 phase. NAC greatly increased the percentage of trypomastigotes. Taken together, these data show a shift in the triatomine gut microenvironment caused by the redox status may also influence T. cruzi biology inside the vector. In this scenario, oxidants act to turn on epimastigote proliferation while antioxidants seem to switch the cycle towards metacyclogenesis. This is a new insight that defines a key role for redox metabolism in governing the parasitic life cycle.

摘要

克氏锥虫在锥蝽肠道的不同区域增殖并分化,而锥蝽肠道是克氏锥虫遇到的第一个环境。由于其复杂的生命周期,该寄生虫不断暴露于活性氧(ROS)中。我们测试了促氧化分子过氧化氢(H₂O₂)和超氧化物产生剂百草枯,以及具有不同氧化还原状态的媒介物代谢产物(即血红素、疟色素和尿酸盐)对增殖和循环体形成的影响。我们还测试了抗氧化剂N-乙酰半胱氨酸(NAC)和谷胱甘肽(GSH)。血红素诱导无鞭毛体增殖并损害循环体形成。β-血红素不影响无鞭毛体增殖,但会降低寄生虫分化。相反,我们发现尿酸盐、GSH和NAC显著损害无鞭毛体增殖,并且在循环体形成过程中,NAC和尿酸盐诱导锥鞭毛体显著增加,同时降低无鞭毛体的百分比。我们还通过定量聚合酶链反应(qPCR)对媒介物前中肠、后中肠和直肠中的寄生虫负荷进行了定量。抗氧化剂处理增加了所有分析的中肠段中的寄生虫负荷。在体内,通过差异计数分析,喂食还原分子的媒介物组显示锥鞭毛体增加,无鞭毛体减少。血红素通过增加S期和G2/M期的细胞数量来刺激增殖,而NAC使无鞭毛体停滞在G1期。NAC大大增加了锥鞭毛体的百分比。综上所述,这些数据表明氧化还原状态引起的锥蝽肠道微环境变化可能也会影响媒介物体内克氏锥虫的生物学特性。在这种情况下,氧化剂促进无鞭毛体增殖,而抗氧化剂似乎使周期转向循环体形成。这是一个新的见解,定义了氧化还原代谢在控制寄生虫生命周期中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43e1/4324650/f4ce97372c27/pone.0116712.g001.jpg

相似文献

1
Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status.
PLoS One. 2015 Feb 11;10(2):e0116712. doi: 10.1371/journal.pone.0116712. eCollection 2015.
3
Bioactive lipids regulate Trypanosoma cruzi development.
Parasitol Res. 2019 Sep;118(9):2609-2619. doi: 10.1007/s00436-019-06331-9. Epub 2019 Jul 2.
4
Heme crystallization in a Chagas disease vector acts as a redox-protective mechanism to allow insect reproduction and parasite infection.
PLoS Negl Trop Dis. 2018 Jul 23;12(7):e0006661. doi: 10.1371/journal.pntd.0006661. eCollection 2018 Jul.
5
Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing.
Parasitology. 2016 Apr;143(4):434-43. doi: 10.1017/S0031182015001857. Epub 2016 Jan 28.
9
Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus.
Exp Parasitol. 2007 Jun;116(2):120-8. doi: 10.1016/j.exppara.2006.12.014. Epub 2007 Jan 13.

引用本文的文献

1
Lectin Recognition Patterns in the Gut of and Their Association with Metacyclogenesis.
Microorganisms. 2025 Aug 5;13(8):1823. doi: 10.3390/microorganisms13081823.
2
Untargeted Metabolomics of Epimastigote Forms of .
Bio Protoc. 2025 Jul 5;15(13):e5368. doi: 10.21769/BioProtoc.5368.
3
Energy metabolism in : the validated and putative bioenergetic and carbon sources.
mBio. 2025 Jun 11;16(6):e0221524. doi: 10.1128/mbio.02215-24. Epub 2025 May 20.
4
Understanding Sex-biases in Kinetoplastid Infections: Leishmaniasis and Trypanosomiasis.
Expert Rev Mol Med. 2025 Jan 9;27:e7. doi: 10.1017/erm.2024.41.
5
α-Glucosidase isoform G contributes to heme detoxification in and its knockdown affects metacyclogenesis.
Curr Res Insect Sci. 2024 Oct 16;6:100100. doi: 10.1016/j.cris.2024.100100. eCollection 2024.
6
Branched-chain amino acids modulate the proteomic profile of Trypanosoma cruzi metacyclogenesis induced by proline.
PLoS Negl Trop Dis. 2024 Oct 9;18(10):e0012588. doi: 10.1371/journal.pntd.0012588. eCollection 2024 Oct.
7
A sticky situation: When trypanosomatids attach to insect tissues.
PLoS Pathog. 2023 Dec 21;19(12):e1011854. doi: 10.1371/journal.ppat.1011854. eCollection 2023 Dec.
8
The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders.
Biomolecules. 2023 Oct 27;13(11):1586. doi: 10.3390/biom13111586.
9
Glucose metabolism sustains heme-induced Trypanosoma cruzi epimastigote growth in vitro.
PLoS Negl Trop Dis. 2023 Nov 10;17(11):e0011725. doi: 10.1371/journal.pntd.0011725. eCollection 2023 Nov.
10
Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa.
Microorganisms. 2023 Jun 16;11(6):1598. doi: 10.3390/microorganisms11061598.

本文引用的文献

1
Cellular mechanisms and physiological consequences of redox-dependent signalling.
Nat Rev Mol Cell Biol. 2014 Jun;15(6):411-21. doi: 10.1038/nrm3801.
2
The antioxidant role of xanthurenic acid in the Aedes aegypti midgut during digestion of a blood meal.
PLoS One. 2012;7(6):e38349. doi: 10.1371/journal.pone.0038349. Epub 2012 Jun 11.
3
American trypanosomiasis (Chagas disease).
Infect Dis Clin North Am. 2012 Jun;26(2):275-91. doi: 10.1016/j.idc.2012.03.002.
4
Trypanosoma cruzi: effects of azadirachtin and ecdysone on the dynamic development in Rhodnius prolixus larvae.
Exp Parasitol. 2012 Jul;131(3):363-71. doi: 10.1016/j.exppara.2012.05.005. Epub 2012 May 22.
5
Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection.
Acta Trop. 2012 Sep;123(3):170-7. doi: 10.1016/j.actatropica.2012.05.002. Epub 2012 May 18.
7
Trypanosoma cruzi antioxidant enzymes as virulence factors in Chagas disease.
Antioxid Redox Signal. 2013 Sep 1;19(7):723-34. doi: 10.1089/ars.2012.4618. Epub 2012 May 21.
10
The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi.
J Parasitol Res. 2011;2011:174614. doi: 10.1155/2011/174614. Epub 2011 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验