Suppr超能文献

不对称羽毛的羽枝几何结构揭示了鸟类飞行进化中的一种过渡形态。

Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.

作者信息

Feo Teresa J, Field Daniel J, Prum Richard O

机构信息

Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA Peabody Museum of Natural History, Yale University, New Haven, CT, USA

Department of Geology and Geophysics, Yale University, New Haven, CT, USA Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC, USA.

出版信息

Proc Biol Sci. 2015 Mar 22;282(1803):20142864. doi: 10.1098/rspb.2014.2864.

Abstract

The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather's aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized.

摘要

羽枝(羽枝长度和羽枝角度)的几何形状决定了羽毛羽片的不对称性和羽片刚度,这两者对羽毛的空气动力学性能都至关重要。在这里,我们描述了从现代鸟类多样性之外的中生代类群(小盗龙、始祖鸟、孔子鸟、热河鸟和反鸟亚纲的始鹏鸟)到大量现代鸟类样本的不对称飞羽进化历史中羽枝几何形状与空气动力学功能之间的关系。与之前的假设相反,我们发现羽枝角度与羽片宽度不对称无关;相反,羽枝角度随羽片功能而变化,而羽枝长度变化决定羽片不对称性。我们证明,飞行羽毛羽片功能不同的部分之间羽枝几何形状存在显著差异,前沿的主羽片占据形态空间的一个独特区域,其特征是羽枝角度较小。这种前沿羽片形态在现代鸟类和中生代基干鸟类的系统发育和功能多样的样本中普遍存在,揭示了一种从晚侏罗世就一直存在的基本空气动力学适应性。然而,在鸟胸骨类和反鸟亚纲的中生代类群中,尾羽羽枝几何形状与现代鸟类明显不同。在现代鸟类和反鸟亚纲中,尾羽的羽枝角度都比始祖鸟等相对基干类群的要大,始祖鸟的尾羽羽枝角度较小。这一发现揭示了飞行羽毛形态学中一个以前未被认识到的进化转变,这对始祖鸟和小盗龙等早期有羽毛兽脚类恐龙的飞行能力具有重要意义。我们的研究结果表明,完全现代的鸟类飞行羽毛,以及可能的现代动力飞行能力,是在不对称飞羽起源很久之后,在孔子鸟之上进化而来的,比之前认为的要晚得多。

相似文献

1
Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.
Proc Biol Sci. 2015 Mar 22;282(1803):20142864. doi: 10.1098/rspb.2014.2864.
2
Flight, symmetry and barb angle evolution in the feathers of birds and other dinosaurs.
Biol Lett. 2019 Dec 24;15(12):20190622. doi: 10.1098/rsbl.2019.0622. Epub 2019 Dec 4.
3
Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.
J Exp Zool B Mol Dev Evol. 2014 Jun;322(4):240-55. doi: 10.1002/jez.b.22573. Epub 2014 May 9.
4
Theory of the development of curved barbs and their effects on feather morphology.
J Morphol. 2016 Aug;277(8):995-1013. doi: 10.1002/jmor.20552. Epub 2016 May 17.
5
Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability.
Science. 2010 May 14;328(5980):887-9. doi: 10.1126/science.1188895.
6
New evidence on the colour and nature of the isolated Archaeopteryx feather.
Nat Commun. 2012 Jan 24;3:637. doi: 10.1038/ncomms1642.
7
Origin of flight: Could 'four-winged' dinosaurs fly?
Nature. 2005 Nov 17;438(7066):E3; discussion E3-4. doi: 10.1038/nature04354.
8
Primitive wing feather arrangement in Archaeopteryx lithographica and Anchiornis huxleyi.
Curr Biol. 2012 Dec 4;22(23):2262-7. doi: 10.1016/j.cub.2012.09.052. Epub 2012 Nov 21.
10
The primary feather lengths of early birds with respect to avian wing shape evolution.
J Evol Biol. 2011 Jun;24(6):1226-31. doi: 10.1111/j.1420-9101.2011.02253.x. Epub 2011 Mar 18.

引用本文的文献

1
Forelimb feathering, soft tissues, and skeleton of the flying dromaeosaurid Microraptor.
BMC Ecol Evol. 2025 Jul 1;25(1):65. doi: 10.1186/s12862-025-02397-5.
2
Wing extension-flexion coupled aeroelastic effects improve avian gliding performance.
J R Soc Interface. 2025 May;22(226):20240753. doi: 10.1098/rsif.2024.0753. Epub 2025 May 7.
4
The feather's multi-functional structure across nano to macro scales inspires hierarchical design.
J R Soc Interface. 2025 Apr;22(225):20240776. doi: 10.1098/rsif.2024.0776. Epub 2025 Apr 23.
5
The origin and early evolution of feathers: implications, uncertainties and future prospects.
Biol Lett. 2025 Feb;21(2):20240517. doi: 10.1098/rsbl.2024.0517. Epub 2025 Feb 19.
6
Whence the birds: 200 years of dinosaurs, avian antecedents.
Biol Lett. 2025 Jan;21(1):20240500. doi: 10.1098/rsbl.2024.0500. Epub 2025 Jan 22.
7
Molecular genetic foundation of a sex-linked tailless trait in Hongshan chicken by whole genome data analysis.
Poult Sci. 2024 Jun;103(6):103685. doi: 10.1016/j.psj.2024.103685. Epub 2024 Mar 21.
8
Functional constraints on the number and shape of flight feathers.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2306639121. doi: 10.1073/pnas.2306639121. Epub 2024 Feb 12.
9
Coracoid strength as an indicator of wing-beat propulsion in birds.
J Anat. 2023 Mar;242(3):436-446. doi: 10.1111/joa.13788. Epub 2022 Nov 15.
10
Fossil basicranium clarifies the origin of the avian central nervous system and inner ear.
Proc Biol Sci. 2022 Sep 28;289(1983):20221398. doi: 10.1098/rspb.2022.1398.

本文引用的文献

2
Functional osteology of the avian wrist and the evolution of flapping flight.
J Morphol. 1992 Mar;211(3):259-268. doi: 10.1002/jmor.1052110303.
3
FLIGHTLESSNESS IN STEAMER-DUCKS (ANATIDAE: TACHYERES): ITS MORPHOLOGICAL BASES AND PROBABLE EVOLUTION.
Evolution. 1986 May;40(3):540-558. doi: 10.1111/j.1558-5646.1986.tb00506.x.
4
New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers.
Nature. 2014 Jul 3;511(7507):79-82. doi: 10.1038/nature13467.
5
Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.
J Exp Zool B Mol Dev Evol. 2014 Jun;322(4):240-55. doi: 10.1002/jez.b.22573. Epub 2014 May 9.
7
Skeletal correlates for body mass estimation in modern and fossil flying birds.
PLoS One. 2013 Nov 29;8(11):e82000. doi: 10.1371/journal.pone.0082000. eCollection 2013.
8
Paleontology. Feathers before flight.
Science. 2013 May 10;340(6133):690-2. doi: 10.1126/science.1235463.
9
Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.
Nature. 2013 May 2;497(7447):104-7. doi: 10.1038/nature12059. Epub 2013 Apr 24.
10
The global diversity of birds in space and time.
Nature. 2012 Nov 15;491(7424):444-8. doi: 10.1038/nature11631. Epub 2012 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验