Huang Wenwen, Pitorre Delphine, Poretska Olena, Marizzi Christine, Winter Nikola, Poppenberger Brigitte, Sieberer Tobias
Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany.
Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria (W.H., D.P., O.P., C.M., N.W., B.P., T.S.); andResearch Unit Plant Growth Regulation (O.P., T.S.) and Biotechnology of Horticultural Crops (B.P.), TUM School of Life Sciences Weihenstephan, Technische Universität München, D-85354 Freising, Germany
Plant Physiol. 2015 Apr;167(4):1471-86. doi: 10.1104/pp.114.254623. Epub 2015 Feb 11.
Plants are able to reiteratively form new organs in an environmentally adaptive manner during postembryonic development. Organ formation in plants is dependent on stem cell niches (SCNs), which are located in the so-called meristems. Meristems show a functional zonation along the apical-basal axis and the radial axis. Shoot apical meristems of higher plants are dome-like structures, which contain a central SCN that consists of an apical stem cell pool and an underlying organizing center. Organ primordia are formed in the circular peripheral zone (PZ) from stem cell descendants in which differentiation programs are activated. One mechanism to keep this radial symmetry integrated is that the existing SCN actively suppresses stem cell identity in the PZ. However, how this lateral inhibition system works at the molecular level is far from understood. Here, we show that a defect in the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) causes the formation of extra SCNs in the presence of an intact primary shoot apical meristem, which at least partially contributes to the enhanced shoot meristem size and leaf initiation rate found in the mutant. This defect appears to be neither a specific consequence of the altered cytokinin levels in amp1 nor directly mediated by the WUSCHEL/CLAVATA feedback loop. De novo formation of supernumerary stem cell pools was further enhanced in plants mutated in both AMP1 and its paralog LIKE AMP1, indicating that they exhibit partially overlapping roles to suppress SCN respecification in the PZ.
植物在胚胎后发育过程中能够以环境适应性方式反复形成新器官。植物中的器官形成依赖于位于所谓分生组织中的干细胞龛(SCN)。分生组织沿顶基轴和径向轴呈现功能分区。高等植物的茎尖分生组织是圆顶状结构,其中包含一个中央SCN,该中央SCN由一个顶端干细胞池和一个下方的组织中心组成。器官原基在圆形外周区(PZ)由激活分化程序的干细胞后代形成。维持这种径向对称性整合的一种机制是现有的SCN积极抑制PZ中的干细胞特性。然而,这种侧向抑制系统在分子水平上是如何工作的,目前还远未被理解。在这里,我们表明,假定的羧肽酶ALTERED MERISTEM PROGRAM1(AMP1)的缺陷会在完整的初生茎尖分生组织存在的情况下导致额外SCN的形成,这至少部分促成了突变体中茎尖分生组织大小的增加和叶片起始率的提高。这种缺陷似乎既不是amp1中细胞分裂素水平改变的特定结果,也不是由WUSCHEL/CLAVATA反馈环直接介导的。在AMP1及其旁系同源物LIKE AMP1均发生突变的植物中,超数干细胞池的从头形成进一步增强,这表明它们在抑制PZ中的SCN重新指定方面表现出部分重叠的作用。