Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
Plant J. 2013 Mar;73(5):798-813. doi: 10.1111/tpj.12085.
Adventitious shoot organogenesis contributes to the fitness of diverse plant species, and control of this process is a vital step in plant transformation and in vitro propagation. New shoot meristems (SMs) can be induced by the conversion of lateral root primorida/meristems (LRP/LRMs) or callus expressing markers for this identity. To study this important and fascinating process we developed a high-throughput methodology for the synchronous initiation of LRP by auxin, and subsequent cytokinin-induced conversion of these LRP to SMs. Cytokinin treatment induces the expression of the shoot meristematic gene WUSCHEL (WUS) in converting LRP (cLRP) within 24-30 h, and WUS is required for LRP → SM conversion. Subsequently, a transcriptional reporter for CLAVATA3 (CLV3) appeared 32-48 h after transfer to cytokinin, marking presumptive shoot stem cells at the apex of cLRP. Thus the spatial expression of these two components (WUS and CLV3) of a regulatory network maintaining SM stem cells already resembles that seen in a vegetative shoot apical meristem (SAM), suggesting the very rapid initiation and establishment of the new SMs. Our high-throughput methodology enabled us to successfully apply a systems approach to the study of plant regeneration. Herein we characterize transcriptional reporter expression and global gene expression changes during LRP → SM conversion, elaborate the role of WUS and WUS-responsive genes in the conversion process, identify and test putative functional targets, perform a comparative analysis of domain-specific expression in cLRP and SM tissue, and develop a bioinformatic tool for examining gene expression in diverse regeneration systems.
不定芽器官发生有助于多种植物物种的适应,而对这个过程的控制是植物转化和体外繁殖的关键步骤。新的茎尖分生组织(SMs)可以通过侧根原基/分生组织(LRP/LRMs)的转化或表达该身份标记的愈伤组织诱导。为了研究这个重要而迷人的过程,我们开发了一种用于通过生长素同步诱导 LRP 起始的高通量方法,以及随后用细胞分裂素诱导这些 LRP 转化为 SMs。细胞分裂素处理在 24-30 小时内诱导转化 LRP(cLRP)中茎尖分生组织基因 WUSCHEL(WUS)的表达,并且 WUS 是 LRP→SM 转化所必需的。随后,在转移到细胞分裂素后 32-48 小时,CLAVATA3(CLV3)的转录报告基因出现在 cLRP 的顶端,标记潜在的茎干细胞。因此,维持 SM 干细胞的调控网络的这两个组成部分(WUS 和 CLV3)的空间表达已经类似于在营养性茎尖分生组织(SAM)中看到的表达,这表明新的 SMs 非常迅速地启动和建立。我们的高通量方法使我们能够成功地将系统方法应用于植物再生的研究。在这里,我们描述了在 LRP→SM 转化过程中报告基因表达和全基因表达变化的特征,详细阐述了 WUS 和 WUS 响应基因在转化过程中的作用,鉴定并测试了潜在的功能靶点,对 cLRP 和 SM 组织中特定区域表达进行了比较分析,并开发了一种用于检查不同再生系统中基因表达的生物信息学工具。