School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha-751007, India.
Dalton Trans. 2015 Mar 21;44(11):5114-24. doi: 10.1039/c4dt03647f.
Mononuclear half-sandwiched complexes (p-cym)RuCl(bpmo) {1} and (p-cym)RuCl(bpms) {2} have been prepared by reacting heteroscorpionate ligands bpmo = 2-methoxyphenyl-bis(3,5-dimethylpyrazol-1-yl)methane and bpms = 2-methylthiophenyl-bis(3,5-dimethylpyrazol-1-yl)methane, respectively, with a dimeric precursor complex [(p-cym)RuCl(μ-Cl)]2 (p-cym = 1-isopropyl-4-methylbenzene) in methanol. The corresponding aqua derivatives (p-cym)Ru(H2O)(bpmo)2 {32} and (p-cym)Ru(H2O)(bpms)2 {42} are obtained from {1} and {2}, respectively, via Cl(-)/H2O exchange process in the presence of appropriate equivalents of AgClO4/AgNO3 + KPF6 in a methanol-water mixture. The molecular structures of the complexes {[1]Cl, 32 and 4(NO3)} are authenticated by their single crystal X-ray structures. The complexes show the expected piano-stool geometry with p-cym in the η(6) binding mode. The aqua complexes 32 and 42 show significantly good antibacterial activity towards E. coli (gram negative) and B. subtilis (gram positive) strains, while chloro derivatives ({1} and {2} are found to be virtually inactive. The order of antibacterial activity of the complexes according to their MIC values is 1 (both 1000 μg mL(-1)) < 2 (580 μg mL(-1) and 750 μg mL(-1)) < 32 (both 100 μg mL(-1)) < 42 (30 μg mL(-1) and 60 μg mL(-1)) for E. coli and B. subtilis strains, respectively. Further, the aqua complexes 32 and 42 show clear zones of inhibition against kanamycin, ampicillin and chloramphenicol resistant E. coli strains. The detailed mechanistic aspects of the aforesaid active aqua complexes 32 and 42 have been explored, and it reveals that both the complexes inhibit the number of nucleoids per cell in vivo and bind to DNA in vitro. The results indeed demonstrate that both 32 and 42 facilitate the inhibition of bacterial growth by binding to DNA.
单核夹心配合物[(p-cym)RuCl(bpmo)] (ClO4) {1}和[(p-cym)RuCl(bpms)] (PF6) {2}是通过将异硫代半冠配体 bpmo = 2-甲氧基苯基-双(3,5-二甲基吡唑-1-基)甲烷和 bpms = 2-甲基噻吩基-双(3,5-二甲基吡唑-1-基)甲烷分别与二聚体前体配合物[(p-cym)RuCl(μ-Cl)]2 (p-cym = 1-异丙基-4-甲基苯)在甲醇中反应制备的。相应的水合衍生物[(p-cym)Ru(H2O)(bpmo)] (ClO4)2 {32}和[(p-cym)Ru(H2O)(bpms)] (PF6)2 {42}分别通过 Cl(-)/H2O 交换过程从{1}和{2}获得,在甲醇-水混合物中存在适当当量的 AgClO4/AgNO3 + KPF6。配合物{[1]Cl、32 和4(NO3)}的分子结构通过它们的单晶 X 射线结构得到证实。这些配合物表现出预期的钢琴凳几何形状,p-cym 处于η(6)键合模式。水合配合物32 和42 对大肠杆菌(革兰氏阴性)和枯草芽孢杆菌(革兰氏阳性)菌株表现出显著的良好抗菌活性,而氯衍生物{1}和{2}则几乎没有活性。根据 MIC 值,配合物的抗菌活性顺序为1(均为 1000μg mL(-1))<2(580μg mL(-1)和 750μg mL(-1))<32(均为 100μg mL(-1))<42(30μg mL(-1)和 60μg mL(-1)),分别针对大肠杆菌和枯草芽孢杆菌菌株。此外,水合配合物32 和42 对卡那霉素、氨苄青霉素和氯霉素耐药的大肠杆菌菌株表现出明显的抑菌区。已经探索了上述活性水合配合物32 和42 的详细作用机制,结果表明,这两种配合物都能抑制体内每个细胞的核体数量,并能与 DNA 结合。这些结果确实表明,32 和42 都通过与 DNA 结合来促进细菌生长的抑制。