Zhang Jingyu, Yang Jiazhong, Wu Changxu
a Institute of Psychology, Chinese Academy of Sciences , Beijing , China.
Ergonomics. 2015;58(8):1320-36. doi: 10.1080/00140139.2015.1009498. Epub 2015 Feb 24.
In this paper, we propose a relational complexity (RC) network framework based on RC metric and network theory to model controllers' workload in conflict detection and resolution. We suggest that, at the sector level, air traffic showing a centralised network pattern can provide cognitive benefits in visual search and resolution decision which will in turn result in lower workload. We found that the network centralisation index can account for more variance in predicting perceived workload and task completion time in both a static conflict detection task (Study 1) and a dynamic one (Study 2) in addition to other aircraft-level and pair-level factors. This finding suggests that linear combination of aircraft-level or dyad-level information may not be adequate and the global-pattern-based index is necessary. Theoretical and practical implications of using this framework to improve future workload modelling and management are discussed.
We propose a RC network framework to model the workload of air traffic controllers. The effect of network centralisation was examined in both a static conflict detection task and a dynamic one. Network centralisation was predictive of perceived workload and task completion time over and above other control variables.
在本文中,我们基于关系复杂性(RC)度量和网络理论提出了一种关系复杂性(RC)网络框架,用于对冲突检测与解决过程中管制员的工作负荷进行建模。我们认为,在扇区层面,呈现集中式网络模式的空中交通在视觉搜索和解决决策方面能够带来认知优势,进而降低工作负荷。我们发现,除了其他飞机层面和配对层面的因素外,网络集中化指数在预测静态冲突检测任务(研究1)和动态冲突检测任务(研究2)中的感知工作负荷和任务完成时间方面,能够解释更多的方差。这一发现表明,飞机层面或二元组层面信息的线性组合可能并不充分,基于全局模式的指数是必要的。本文还讨论了使用该框架改进未来工作负荷建模与管理的理论和实际意义。
我们提出了一个RC网络框架来对空中交通管制员的工作负荷进行建模。在静态冲突检测任务和动态冲突检测任务中都考察了网络集中化的影响。网络集中化在其他控制变量之外,对感知工作负荷和任务完成时间具有预测作用。