Suppr超能文献

相似文献

2
Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration.
Acta Biomater. 2010 Aug;6(8):2970-8. doi: 10.1016/j.actbio.2010.02.020. Epub 2010 Feb 16.
3
Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications.
J Neural Eng. 2009 Feb;6(1):016001. doi: 10.1088/1741-2560/6/1/016001. Epub 2008 Dec 22.
5
Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.
Biomed Mater. 2018 Jun 4;13(5):054101. doi: 10.1088/1748-605X/aac4de.
7
The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension.
PLoS One. 2015 Sep 4;10(9):e0136780. doi: 10.1371/journal.pone.0136780. eCollection 2015.
8
Exploring the effects of electrospun fiber surface nanotopography on neurite outgrowth and branching in neuron cultures.
PLoS One. 2019 Feb 4;14(2):e0211731. doi: 10.1371/journal.pone.0211731. eCollection 2019.
9
Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites.
ACS Appl Mater Interfaces. 2016 May 25;8(20):12576-82. doi: 10.1021/acsami.6b00957. Epub 2016 May 12.

引用本文的文献

1
Substrate topography as a powerful tool to modify glial cell biology and interactions.
Neural Regen Res. 2025 May 1;20(5):1390-1391. doi: 10.4103/NRR.NRR-D-24-00329. Epub 2024 Jun 26.
3
Biomaterial strategies for creating astrocyte cultures resembling astrocyte morphologies and phenotypes.
Curr Opin Biomed Eng. 2020 Jun;14:67-74. doi: 10.1016/j.cobme.2020.06.004. Epub 2020 Jul 4.
4
Anisotropic scaffolds for peripheral nerve and spinal cord regeneration.
Bioact Mater. 2021 Apr 23;6(11):4141-4160. doi: 10.1016/j.bioactmat.2021.04.019. eCollection 2021 Nov.
5
Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration.
Bioengineering (Basel). 2020 Dec 29;8(1):4. doi: 10.3390/bioengineering8010004.
6
Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes.
Front Neurosci. 2019 Jul 5;13:689. doi: 10.3389/fnins.2019.00689. eCollection 2019.
7
Biomaterial Approaches to Modulate Reactive Astroglial Response.
Cells Tissues Organs. 2018;205(5-6):372-395. doi: 10.1159/000494667. Epub 2018 Dec 5.
8
Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives.
Front Cell Neurosci. 2018 Jan 11;11:430. doi: 10.3389/fncel.2017.00430. eCollection 2017.
9
Electrospun Fibers for Spinal Cord Injury Research and Regeneration.
J Neurotrauma. 2016 Aug 1;33(15):1405-15. doi: 10.1089/neu.2015.4165. Epub 2016 Mar 30.

本文引用的文献

1
Arthroscopic airbrush assisted cell implantation for cartilage repair in the knee: a controlled laboratory and human cadaveric study.
Osteoarthritis Cartilage. 2015 Jan;23(1):143-50. doi: 10.1016/j.joca.2014.09.016. Epub 2014 Sep 18.
2
Spinal cord injury models: a review.
Spinal Cord. 2014 Aug;52(8):588-95. doi: 10.1038/sc.2014.91. Epub 2014 Jun 10.
3
Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.
J Neural Eng. 2014 Aug;11(4):046002. doi: 10.1088/1741-2560/11/4/046002. Epub 2014 Jun 3.
4
Spraying light: ambient-air fabrication of large-area emissive devices on complex-shaped surfaces.
Adv Mater. 2014 Aug 6;26(29):4975-80. doi: 10.1002/adma.201401286. Epub 2014 May 15.
5
3D Electrospun scaffolds promote a cytotrophic phenotype of cultured primary astrocytes.
J Neurochem. 2014 Jul;130(2):215-26. doi: 10.1111/jnc.12702. Epub 2014 Apr 10.
6
An in vitro spinal cord injury model to screen neuroregenerative materials.
Biomaterials. 2014 Apr;35(12):3756-65. doi: 10.1016/j.biomaterials.2014.01.022. Epub 2014 Jan 29.
10
The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds.
Biomaterials. 2013 Mar;34(10):2389-98. doi: 10.1016/j.biomaterials.2012.12.020. Epub 2013 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验