Novoa David, Tommasini Daniele, Nóvoa-López José A
Max Planck Institute for the Science of Light, Günther-Scharowsky Strasse 1, 91058 Erlangen, Germany.
Departamento de Física Aplicada. Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012904. doi: 10.1103/PhysRevE.91.012904. Epub 2015 Jan 6.
We introduce a complete analytical and numerical study of the modulational instability process in a system governed by a canonical nonlinear Schrödinger equation involving local, arbitrary nonlinear responses to the applied field. In particular, our theory accounts for the recently proposed higher-order Kerr nonlinearities, providing very simple analytical criteria for the identification of multiple regimes of stability and instability of plane-wave solutions in such systems. Moreover, we discuss a new parametric regime in the higher-order Kerr response, which allows for the observation of several, alternating stability-instability windows defining a yet unexplored instability landscape.
我们对由一个规范非线性薛定谔方程所描述的系统中的调制不稳定性过程进行了全面的分析和数值研究,该方程涉及对外部场的局部任意非线性响应。特别地,我们的理论考虑了最近提出的高阶克尔非线性效应,为识别此类系统中平面波解的多种稳定和不稳定状态提供了非常简单的分析标准。此外,我们讨论了高阶克尔响应中的一种新的参数区域,该区域允许观察到几个交替出现的稳定-不稳定窗口,从而定义了一个尚未被探索的不稳定态势。