Dana Itzhack
Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012914. doi: 10.1103/PhysRevE.91.012914. Epub 2015 Jan 20.
Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η. The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum βℏ, to a generalized DKR, the "β-DKR." We determine general quantum properties of β-DKRs and DKPs for arbitrary rational η. The quasienergy problem of β-DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β-DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β-DKRs are shown to be the simultaneous rationality of η,β, and a scaled Planck constant ℏ(S). For rational ℏ(S) and generic values of β, the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏ(S) exhibit unique number-theoretical features involving η,ℏ(S), and β.
双踢转子(DKRs)似乎是最简单的非可积哈密顿系统,对于参数η的无穷多个值(有理数),其在相空间(即角动量)中具有经典平移对称性。通过原子光学方法对量子DKRs进行实验实现,激发了对双踢粒子(DKP)的研究。在守恒准动量βℏ的任何固定值下,后者可简化为广义DKR,即“β - DKR”。我们确定了任意有理数η下β - DKRs和DKPs的一般量子性质。结果表明,β - DKRs的准能量问题等同于有限条耦合晶格链的能量本征值问题。然后在一个通常无穷的集合中,得到了所有β对应的β - DKRs准能谱之间的精确联系。β - DKRs量子共振的一般条件被证明是η、β和一个缩放后的普朗克常数ℏ(S)同时为有理数。对于有理数ℏ(S)和一般的β值,发现准能谱具有交错阶梯结构。还发现了其他类似于霍夫施塔特蝴蝶的谱结构。最后,我们证明了存在特定的DKP波包,其量子动力学是自由的,即这些波包中期望值的演化频率与非可积性无关。有理数ℏ(S)的所有结果都展现出涉及η、ℏ(S)和β的独特数论特征。