Suppr超能文献

Morphological stability of an interface between two non-Newtonian fluids moving in a Hele-Shaw cell.

作者信息

Martyushev L M, Birzina A I

机构信息

Ural Federal University, Mira Street 19, Yekaterinburg, 620002 Russia.

Ural Federal University, Mira Street 19, Yekaterinburg, 620002 Russia and and Institute of Industrial Ecology, S. Kovalevskoi Street 20a, Yekaterinburg, 620219 Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):013004. doi: 10.1103/PhysRevE.91.013004. Epub 2015 Jan 8.

Abstract

The problem of the morphological stability of an interface in the case of the displacement of one non-Newtonian fluid by another non-Newtonian fluid in a radial Hele-Shaw cell has been considered. Both fluids have been described by the two-parameter Ostwald-de Waele power-law model. The nonzero viscosity of the displacing fluid has been taken into account. A generalized Darcy's law for the system under consideration, as well as an equation for the determination of the critical size of morphological stability with respect to harmonic perturbations (linear analysis), has been derived. Morphological phase diagrams have been constructed, and the region of the parameters in which nonequilibrium reentrant morphological transitions are possible has been revealed.

摘要

相似文献

1
Morphological stability of an interface between two non-Newtonian fluids moving in a Hele-Shaw cell.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):013004. doi: 10.1103/PhysRevE.91.013004. Epub 2015 Jan 8.
2
Mode-coupling approach to non-Newtonian Hele-Shaw flow.非牛顿Hele-Shaw流动的模式耦合方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026313. doi: 10.1103/PhysRevE.67.026313. Epub 2003 Feb 19.
3
Saffman-Taylor instability for generalized Newtonian fluids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016308. doi: 10.1103/PhysRevE.80.016308. Epub 2009 Jul 13.
4
Entropy production and stability during radial displacement of fluid in Hele-Shaw cell.赫雷肖盒中流体径向位移过程中的熵产生与稳定性
J Phys Condens Matter. 2008 Nov 19;20(46):465102. doi: 10.1088/0953-8984/20/46/465102. Epub 2008 Sep 30.
5
Stretch flow of confined non-Newtonian fluids: nonlinear fingering dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):063003. doi: 10.1103/PhysRevE.88.063003. Epub 2013 Dec 2.
6
Interfacial pattern formation in confined power-law fluids.受限幂律流体中的界面图案形成
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):013013. doi: 10.1103/PhysRevE.90.013013. Epub 2014 Jul 18.
7
Radial viscous fingering in yield stress fluids: onset of pattern formation.屈服应力流体中的径向粘性指进:图案形成的起始
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):013016. doi: 10.1103/PhysRevE.87.013016. Epub 2013 Jan 18.
8
Dynamics of viscous fingers in rotating Hele-Shaw cells with Coriolis effects.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 2):016305. doi: 10.1103/PhysRevE.75.016305. Epub 2007 Jan 17.
9
Inertial effects on rotating Hele-Shaw flows.旋转的亥姆霍兹-肖流动中的惯性效应。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046311. doi: 10.1103/PhysRevE.83.046311. Epub 2011 Apr 22.
10
Generalized Newtonian fluid flow in porous media.多孔介质中的广义牛顿流体流动。
Phys Rev Fluids. 2021 Dec;6(12). doi: 10.1103/physrevfluids.6.123302. Epub 2021 Dec 6.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验