Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA.
Kurnakov Institute for General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia and Faculty of Liberal Arts and Sciences, St. Petersburg State University, 190000 St. Petersburg, Russia.
Phys Rev Lett. 2015 Jan 30;114(4):046601. doi: 10.1103/PhysRevLett.114.046601. Epub 2015 Jan 29.
Electric-field control of spin-dependent properties has become one of the most attractive phenomena in modern materials research due to the promise of new device functionalities. One of the paradigms in this approach is to electrically toggle the spin polarization of carriers injected into a semiconductor using ferroelectric polarization as a control parameter. Using first-principles density-functional calculations, we explore the effect of ferroelectric polarization of electron-doped BaTiO3 (n-BaTiO3) on the spin-polarized transmission across the SrRuO3/n-BaTiO3(001) interface. Our study reveals that, in this system, the interface transmission is negatively spin polarized and that ferroelectric polarization reversal leads to a change in the transport spin polarization from -65% to -98%. Analytical model calculations demonstrate that this is a general effect for ferromagnetic-metal-ferroelectric-semiconductor systems and, furthermore, that ferroelectric modulation can even reverse the sign of spin polarization. The predicted effect provides a nonvolatile mechanism to electrically control spin injection in semiconductor-based spintronics devices.
电场控制自旋相关性质由于有望实现新的器件功能,已成为现代材料研究中最具吸引力的现象之一。这种方法的范例之一是使用铁电极化作为控制参数,电切换注入半导体的载流子的自旋极化。我们使用第一性原理密度泛函计算,研究了电子掺杂 BaTiO3(n-BaTiO3)的铁电极化对 SrRuO3/n-BaTiO3(001)界面自旋极化传输的影响。我们的研究表明,在该体系中,界面传输具有负自旋极化,铁电极化反转导致传输自旋极化从-65%变为-98%。分析模型计算表明,这是铁磁金属-铁电半导体系统的普遍效应,此外,铁电调制甚至可以反转自旋极化的符号。所预测的效应提供了一种非易失性机制,可用于电控制基于半导体的自旋电子学器件中的自旋注入。