Suppr超能文献

与噬菌体的共同进化驱动全基因组宿主进化,并限制非生物有益突变的获得。

Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations.

作者信息

Scanlan Pauline D, Hall Alex R, Blackshields Gordon, Friman Ville-P, Davis Michael R, Goldberg Joanna B, Buckling Angus

机构信息

Department of Zoology, University of Oxford, Oxford, United Kingdom

Department of Zoology, University of Oxford, Oxford, United Kingdom.

出版信息

Mol Biol Evol. 2015 Jun;32(6):1425-35. doi: 10.1093/molbev/msv032. Epub 2015 Feb 12.

Abstract

Studies of antagonistic coevolution between hosts and parasites typically focus on resistance and infectivity traits. However, coevolution could also have genome-wide effects on the hosts due to pleiotropy, epistasis, or selection for evolvability. Here, we investigate these effects in the bacterium Pseudomonas fluorescens SBW25 during approximately 400 generations of evolution in the presence or absence of bacteriophage (coevolution or evolution treatments, respectively). Coevolution resulted in variable phage resistance, lower competitive fitness in the absence of phages, and greater genome-wide divergence both from the ancestor and between replicates, in part due to the evolution of increased mutation rates. Hosts from coevolution and evolution treatments had different suites of mutations. A high proportion of mutations observed in coevolved hosts were associated with a known phage target binding site, the lipopolysaccharide (LPS), and correlated with altered LPS length and phage resistance. Mutations in evolved bacteria were correlated with higher fitness in the absence of phages. However, the benefits of these growth-promoting mutations were completely lost when these bacteria were subsequently coevolved with phages, indicating that they were not beneficial in the presence of resistance mutations (consistent with negative epistasis). Our results show that in addition to affecting genome-wide evolution in loci not obviously linked to parasite resistance, coevolution can also constrain the acquisition of mutations beneficial for growth in the abiotic environment.

摘要

宿主与寄生虫之间的拮抗协同进化研究通常聚焦于抗性和感染性特征。然而,由于基因多效性、上位性或对进化能力的选择,协同进化也可能对宿主产生全基因组范围的影响。在此,我们研究了荧光假单胞菌SBW25在存在或不存在噬菌体的情况下(分别为协同进化或进化处理)大约400代进化过程中的这些影响。协同进化导致了可变的噬菌体抗性、在无噬菌体情况下较低的竞争适应性,以及与祖先和重复样本之间更大的全基因组差异,部分原因是突变率增加的进化。来自协同进化和进化处理的宿主具有不同的突变组合。在协同进化的宿主中观察到的高比例突变与一个已知的噬菌体靶标结合位点——脂多糖(LPS)相关,并与LPS长度改变和噬菌体抗性相关。进化细菌中的突变与在无噬菌体情况下的较高适应性相关。然而,当这些细菌随后与噬菌体协同进化时,这些促进生长的突变所带来的益处完全丧失,这表明它们在存在抗性突变的情况下并无益处(与负上位性一致)。我们的结果表明,除了影响与寄生虫抗性无明显关联的位点的全基因组进化外,协同进化还可能限制在非生物环境中对生长有益的突变的获得。

相似文献

2
Antagonistic coevolution with parasites increases the cost of host deleterious mutations.
Proc Biol Sci. 2006 Jan 7;273(1582):45-9. doi: 10.1098/rspb.2005.3279.
3
Genetic basis of infectivity evolution in a bacteriophage.
Mol Ecol. 2011 Mar;20(5):981-9. doi: 10.1111/j.1365-294X.2010.04903.x. Epub 2010 Nov 12.
4
Greater Phage Genotypic Diversity Constrains Arms-Race Coevolution.
Front Cell Infect Microbiol. 2022 Mar 4;12:834406. doi: 10.3389/fcimb.2022.834406. eCollection 2022.
5
Antagonistic coevolution accelerates molecular evolution.
Nature. 2010 Mar 11;464(7286):275-8. doi: 10.1038/nature08798. Epub 2010 Feb 24.
6
The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage.
Evolution. 2008 Jan;62(1):1-11. doi: 10.1111/j.1558-5646.2007.00260.x. Epub 2007 Nov 12.
7
Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment.
Ecol Lett. 2011 Mar;14(3):282-8. doi: 10.1111/j.1461-0248.2010.01586.x. Epub 2011 Jan 26.
8
Bacteria-phage coevolution and the emergence of generalist pathogens.
Am Nat. 2011 Jan;177(1):44-53. doi: 10.1086/657441. Epub 2010 Nov 30.
9
Plasmid carriage can limit bacteria-phage coevolution.
Biol Lett. 2015 Aug;11(8). doi: 10.1098/rsbl.2015.0361.
10
Antagonistic coevolution between a bacterium and a bacteriophage.
Proc Biol Sci. 2002 May 7;269(1494):931-6. doi: 10.1098/rspb.2001.1945.

引用本文的文献

1
A phage tail-like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria.
Science. 2024 Jun 14;384(6701):eado0713. doi: 10.1126/science.ado0713.
2
Long-read powered viral metagenomics in the oligotrophic Sargasso Sea.
Nat Commun. 2024 May 14;15(1):4089. doi: 10.1038/s41467-024-48300-6.
3
Phage-driven coevolution reveals trade-off between antibiotic and phage resistance in .
ISME Commun. 2024 Mar 22;4(1):ycae039. doi: 10.1093/ismeco/ycae039. eCollection 2024 Jan.
5
Challenges of bacteriophages application in controlling bacterial plant diseases and how to overcome them.
J Genet Eng Biotechnol. 2023 Oct 10;21(1):98. doi: 10.1186/s43141-023-00549-y.
8
Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species.
ISME J. 2022 Oct;16(10):2433-2447. doi: 10.1038/s41396-022-01285-w. Epub 2022 Jul 20.
9
A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens.
iScience. 2022 Mar 19;25(4):104121. doi: 10.1016/j.isci.2022.104121. eCollection 2022 Apr 15.
10
Genomic Changes and Genetic Divergence of Under Phage Infection Stress Revealed by Whole-Genome Sequencing and Resequencing.
Front Microbiol. 2021 Oct 4;12:710262. doi: 10.3389/fmicb.2021.710262. eCollection 2021.

本文引用的文献

2
Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.
Sci Rep. 2014 Apr 28;4:4738. doi: 10.1038/srep04738.
3
Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities.
FEMS Microbiol Rev. 2014 Sep;38(5):916-31. doi: 10.1111/1574-6976.12072. Epub 2014 Mar 27.
4
Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli.
Science. 2014 Mar 21;343(6177):1366-9. doi: 10.1126/science.1248688. Epub 2014 Mar 6.
5
Evolution of Pseudomonas aeruginosa virulence as a result of phage predation.
Appl Environ Microbiol. 2013 Oct;79(19):6110-6. doi: 10.1128/AEM.01421-13. Epub 2013 Jul 26.
7
Selection on non-social traits limits the invasion of social cheats.
Ecol Lett. 2012 Aug;15(8):841-6. doi: 10.1111/j.1461-0248.2012.01805.x. Epub 2012 May 29.
8
Rapid diversification of coevolving marine Synechococcus and a virus.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4544-9. doi: 10.1073/pnas.1120310109. Epub 2012 Mar 2.
9
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.
Genome Res. 2012 Mar;22(3):568-76. doi: 10.1101/gr.129684.111. Epub 2012 Feb 2.
10
Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25.
ISME J. 2012 Jun;6(6):1148-58. doi: 10.1038/ismej.2011.174. Epub 2011 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验