Suppr超能文献

拮抗协同进化加速了分子进化。

Antagonistic coevolution accelerates molecular evolution.

机构信息

School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.

出版信息

Nature. 2010 Mar 11;464(7286):275-8. doi: 10.1038/nature08798. Epub 2010 Feb 24.

Abstract

The Red Queen hypothesis proposes that coevolution of interacting species (such as hosts and parasites) should drive molecular evolution through continual natural selection for adaptation and counter-adaptation. Although the divergence observed at some host-resistance and parasite-infectivity genes is consistent with this, the long time periods typically required to study coevolution have so far prevented any direct empirical test. Here we show, using experimental populations of the bacterium Pseudomonas fluorescens SBW25 and its viral parasite, phage Phi2 (refs 10, 11), that the rate of molecular evolution in the phage was far higher when both bacterium and phage coevolved with each other than when phage evolved against a constant host genotype. Coevolution also resulted in far greater genetic divergence between replicate populations, which was correlated with the range of hosts that coevolved phage were able to infect. Consistent with this, the most rapidly evolving phage genes under coevolution were those involved in host infection. These results demonstrate, at both the genomic and phenotypic level, that antagonistic coevolution is a cause of rapid and divergent evolution, and is likely to be a major driver of evolutionary change within species.

摘要

红色皇后假说提出,相互作用的物种(如宿主和寄生虫)的共同进化应该通过持续的自然选择来驱动分子进化,以适应和对抗适应。尽管一些宿主抗性和寄生虫感染力基因的观察到的分歧与这一假说一致,但迄今为止,研究共同进化所需的长时间段阻止了任何直接的实证检验。在这里,我们使用细菌荧光假单胞菌 SBW25 及其病毒寄生虫噬菌体 Phi2 的实验种群(参考文献 10、11)表明,当细菌和噬菌体与彼此共同进化时,噬菌体的分子进化速度远远高于噬菌体针对恒定宿主基因型进化时的速度。共同进化还导致了复制种群之间更大的遗传分化,这与噬菌体能够感染的宿主范围有关。与这一结果一致的是,共同进化下进化速度最快的噬菌体基因是那些参与宿主感染的基因。这些结果在基因组和表型水平上证明了,拮抗共同进化是快速和分歧进化的原因,并且很可能是物种内进化变化的主要驱动因素。

相似文献

1
Antagonistic coevolution accelerates molecular evolution.
Nature. 2010 Mar 11;464(7286):275-8. doi: 10.1038/nature08798. Epub 2010 Feb 24.
2
Experimental coevolution with bacteria and phage. The Pseudomonas fluorescens--Phi2 model system.
Infect Genet Evol. 2007 Jul;7(4):547-52. doi: 10.1016/j.meegid.2007.01.005. Epub 2007 Jan 26.
4
Greater Phage Genotypic Diversity Constrains Arms-Race Coevolution.
Front Cell Infect Microbiol. 2022 Mar 4;12:834406. doi: 10.3389/fcimb.2022.834406. eCollection 2022.
5
Antagonistic coevolution between a bacterium and a bacteriophage.
Proc Biol Sci. 2002 May 7;269(1494):931-6. doi: 10.1098/rspb.2001.1945.
6
The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage.
Evolution. 2008 Jan;62(1):1-11. doi: 10.1111/j.1558-5646.2007.00260.x. Epub 2007 Nov 12.
7
Parasite host range and the evolution of host resistance.
J Evol Biol. 2015 May;28(5):1119-30. doi: 10.1111/jeb.12639. Epub 2015 Apr 23.
8
Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment.
Ecol Lett. 2011 Mar;14(3):282-8. doi: 10.1111/j.1461-0248.2010.01586.x. Epub 2011 Jan 26.
9
Parasite genetic distance and local adaptation in co-evolving bacteria-bacteriophage populations.
Mol Ecol. 2017 Apr;26(7):1747-1755. doi: 10.1111/mec.13897. Epub 2016 Nov 24.
10
Genetic basis of infectivity evolution in a bacteriophage.
Mol Ecol. 2011 Mar;20(5):981-9. doi: 10.1111/j.1365-294X.2010.04903.x. Epub 2010 Nov 12.

引用本文的文献

1
A Conceptual Disease Cycle Model to Link the Size of Past and Future Epidemics.
Ecol Evol. 2025 Jul 28;15(8):e71868. doi: 10.1002/ece3.71868. eCollection 2025 Aug.
2
Cell surface Toll-like receptor polymorphisms influence and ectoparasite infections in striped hamsters.
iScience. 2025 Jun 13;28(7):112883. doi: 10.1016/j.isci.2025.112883. eCollection 2025 Jul 18.
3
Implications From the Analogous Relationship Between Evolutionary and Learning Processes.
Bioessays. 2025 Aug;47(8):e70027. doi: 10.1002/bies.70027. Epub 2025 Jun 8.
5
Genomics of Experimental Adaptive Radiation in the Cryptic Coloration of Feather Lice.
Genome Biol Evol. 2025 Apr 30;17(5). doi: 10.1093/gbe/evaf083.
6
Reversible excision of the wzy locus in Salmonella Typhimurium may aid recovery following phage predation.
PLoS Genet. 2025 May 2;21(5):e1011688. doi: 10.1371/journal.pgen.1011688. eCollection 2025 May.
8
Comparative Genomics of Phages Related to phiNIT1 from Desert Soils of the Southwest United States.
Phage (New Rochelle). 2023 Dec 14;4(4):173-180. doi: 10.1089/phage.2023.0027. eCollection 2023 Dec.
9
Factors Affecting Phage-Bacteria Coevolution Dynamics.
Viruses. 2025 Feb 8;17(2):235. doi: 10.3390/v17020235.
10
Experimental evolution of on semi-dry silver, copper, stainless steel, and glass surfaces.
Microbiol Spectr. 2025 Apr;13(4):e0217324. doi: 10.1128/spectrum.02173-24. Epub 2025 Feb 14.

本文引用的文献

1
COEVOLUTION IN ECOSYSTEMS: RED QUEEN EVOLUTION OR STASIS?
Evolution. 1984 Jul;38(4):870-880. doi: 10.1111/j.1558-5646.1984.tb00358.x.
2
Genome evolution and adaptation in a long-term experiment with Escherichia coli.
Nature. 2009 Oct 29;461(7268):1243-7. doi: 10.1038/nature08480. Epub 2009 Oct 18.
3
Genome-wide mutational diversity in an evolving population of Escherichia coli.
Cold Spring Harb Symp Quant Biol. 2009;74:119-29. doi: 10.1101/sqb.2009.74.018. Epub 2009 Sep 23.
4
Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini.
Mol Biol Evol. 2009 Nov;26(11):2499-513. doi: 10.1093/molbev/msp166. Epub 2009 Jul 24.
5
Host mixing and disease emergence.
Curr Biol. 2009 May 12;19(9):764-7. doi: 10.1016/j.cub.2009.03.023. Epub 2009 Apr 16.
6
The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage.
Evolution. 2008 Jan;62(1):1-11. doi: 10.1111/j.1558-5646.2007.00260.x. Epub 2007 Nov 12.
7
Evolution of genes and genomes on the Drosophila phylogeny.
Nature. 2007 Nov 8;450(7167):203-18. doi: 10.1038/nature06341.
8
Experimental coevolution with bacteria and phage. The Pseudomonas fluorescens--Phi2 model system.
Infect Genet Evol. 2007 Jul;7(4):547-52. doi: 10.1016/j.meegid.2007.01.005. Epub 2007 Jan 26.
9
Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome.
Nat Genet. 2007 Jan;39(1):126-30. doi: 10.1038/ng1924. Epub 2006 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验