Oyarzún Bernardo, van Westen Thijs, Vlugt Thijs J H
Process and Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands.
J Chem Phys. 2015 Feb 14;142(6):064903. doi: 10.1063/1.4907639.
The isotropic-nematic phase equilibria of linear hard-sphere chains and binary mixtures of them are obtained from Monte Carlo simulations. In addition, the infinite dilution solubility of hard spheres in the coexisting isotropic and nematic phases is determined. Phase equilibria calculations are performed in an expanded formulation of the Gibbs ensemble. This method allows us to carry out an extensive simulation study on the phase equilibria of pure linear chains with a length of 7 to 20 beads (7-mer to 20-mer), and binary mixtures of an 8-mer with a 14-, a 16-, and a 19-mer. The effect of molecular flexibility on the isotropic-nematic phase equilibria is assessed on the 8-mer+19-mer mixture by allowing one and two fully flexible beads at the end of the longest molecule. Results for binary mixtures are compared with the theoretical predictions of van Westen et al. [J. Chem. Phys. 140, 034504 (2014)]. Excellent agreement between theory and simulations is observed. The infinite dilution solubility of hard spheres in the hard-sphere fluids is obtained by the Widom test-particle insertion method. As in our previous work, on pure linear hard-sphere chains [B. Oyarzún, T. van Westen, and T. J. H. Vlugt, J. Chem. Phys. 138, 204905 (2013)], a linear relationship between relative infinite dilution solubility (relative to that of hard spheres in a hard-sphere fluid) and packing fraction is found. It is observed that binary mixtures greatly increase the solubility difference between coexisting isotropic and nematic phases compared to pure components.
通过蒙特卡罗模拟获得了线性硬球链及其二元混合物的各向同性-向列相平衡。此外,还确定了硬球在共存的各向同性相和向列相中的无限稀释溶解度。相平衡计算是在吉布斯系综的扩展公式中进行的。该方法使我们能够对长度为7至20个珠子(7聚体至20聚体)的纯线性链以及8聚体与14聚体、16聚体和19聚体的二元混合物的相平衡进行广泛的模拟研究。通过在最长分子末端允许一个和两个完全柔性的珠子,评估了分子柔性对8聚体+19聚体混合物各向同性-向列相平衡的影响。将二元混合物的结果与van Westen等人[《化学物理杂志》140, 034504 (2014)]的理论预测进行了比较。观察到理论与模拟之间有很好的一致性。通过维登测试粒子插入法获得了硬球在硬球流体中的无限稀释溶解度。正如我们之前在纯线性硬球链上的工作[B. Oyarzún, T. van Westen, and T. J. H. Vlugt, 《化学物理杂志》138, 204905 (2013)]一样,发现相对无限稀释溶解度(相对于硬球在硬球流体中的溶解度)与堆积分数之间存在线性关系。观察到与纯组分相比,二元混合物极大地增加了共存的各向同性相和向列相之间的溶解度差异。