Suppr超能文献

通过电子断层扫描解析突触前结构。

Resolving presynaptic structure by electron tomography.

作者信息

Perkins Guy A, Jackson Dakota R, Spirou George A

机构信息

National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, California, 92092-0608.

出版信息

Synapse. 2015 May;69(5):268-82. doi: 10.1002/syn.21813. Epub 2015 Mar 9.

Abstract

A key goal in neurobiology is to generate a theoretical framework that merges structural, physiological, and molecular explanations of brain function. These categories of explanation do not advance in synchrony; advances in one category define new experiments in other categories. For example, the synapse was defined physiologically and biochemically before it was visualized using electron microscopy. Indeed, the original descriptions of synapses in the 1950s were lent credence by the presence of spherical vesicles in presynaptic terminals that were considered to be the substrate for quantal neurotransmission. In the last few decades, our understanding of synaptic function has again been driven by physiological and molecular techniques. The key molecular players for synaptic vesicle structure, mobility and fusion were identified and applications of the patch clamp technique permitted physiological estimation of neurotransmitter release and receptor properties. These advances demand higher resolution structural images of synapses. During the 1990s a second renaissance in cell biology driven by EM was fueled by improved techniques for electron tomography (ET) with the ability to compute virtual images with nm resolution between image planes. Over the last 15 years, ET has been applied to the presynaptic terminal with special attention to the active zone and organelles of the nerve terminal. In this review, we first summarize the technical improvements that have led to a resurgence in utilization of ET and then we summarize new insights gained by the application of ET to reveal the high-resolution structure of the nerve terminal.

摘要

神经生物学的一个关键目标是建立一个理论框架,将大脑功能的结构、生理和分子解释融合在一起。这些解释类别并非同步发展;一个类别的进展会在其他类别中定义新的实验。例如,突触在通过电子显微镜观察到之前,就已经在生理学和生物化学上被定义了。事实上,20世纪50年代对突触的最初描述,因突触前终末中存在球形囊泡而得到了证实,这些囊泡被认为是量子神经传递的底物。在过去几十年里,我们对突触功能的理解再次受到生理学和分子技术的推动。确定了突触囊泡结构、移动性和融合的关键分子参与者,膜片钳技术的应用使得能够对神经递质释放和受体特性进行生理学评估。这些进展需要更高分辨率的突触结构图像。在20世纪90年代,由电子显微镜推动的细胞生物学的第二次复兴,得益于电子断层扫描(ET)技术的改进,该技术能够计算出图像平面之间具有纳米分辨率的虚拟图像。在过去15年里,ET已被应用于突触前终末,特别关注神经终末的活性区和细胞器。在这篇综述中,我们首先总结导致ET利用率回升的技术改进,然后总结通过应用ET揭示神经终末高分辨率结构所获得的新见解。

相似文献

1
Resolving presynaptic structure by electron tomography.通过电子断层扫描解析突触前结构。
Synapse. 2015 May;69(5):268-82. doi: 10.1002/syn.21813. Epub 2015 Mar 9.
7
Cryo-Electron Tomography of the Mammalian Synapse.哺乳动物突触的冷冻电子断层扫描
Methods Mol Biol. 2018;1847:217-224. doi: 10.1007/978-1-4939-8719-1_16.

引用本文的文献

1
The Biological Significance of Trogocytosis.细胞融合的生物学意义
Results Probl Cell Differ. 2024;73:87-129. doi: 10.1007/978-3-031-62036-2_5.
6
Morphological principles of neuronal mitochondria.神经元线粒体的形态学原理。
J Comp Neurol. 2022 Apr;530(6):886-902. doi: 10.1002/cne.25254. Epub 2021 Nov 1.
8
The Decade of Super-Resolution Microscopy of the Presynapse.突触超分辨率显微镜十年
Front Synaptic Neurosci. 2020 Aug 11;12:32. doi: 10.3389/fnsyn.2020.00032. eCollection 2020.

本文引用的文献

10
The joys and perils of flexible fitting.灵活适配的乐趣与风险。
Adv Exp Med Biol. 2014;805:137-55. doi: 10.1007/978-3-319-02970-2_6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验