Suppr超能文献

Activation of polyphosphoinositide metabolism as a signal-transducing system coupled to excitatory amino acid receptors in astroglial cells.

作者信息

Milani D, Facci L, Guidolin D, Leon A, Skaper S D

机构信息

Fidia Research Laboratories, Department of CNS Research, Abano Terme, Italy.

出版信息

Glia. 1989;2(3):161-9. doi: 10.1002/glia.440020305.

Abstract

Excitatory amino acids (EAA) are known to induce an increase in the breakdown of polyphosphoinositides (PI) in brain slices and in dispersed cultures of neurons. We have now used astroglia cultured from newborn rat cerebra to demonstrate that glutamate provokes, in [3H]inositol-labeled cells, an accumulation of inositol phosphates in a time- and concentration-dependent manner. The ED50 value for glutamate was 40 microM. Quisqualate, ibotenate, and kainate were also active, with their relative potencies in the order of quisqualate greater than ibotenate much greater than kainate. No effect was detected with N-methyl-D-aspartate and quinolinic acid in the absence of Mg2+. The nonselective glutamate receptor antagonist gamma-D-glutamylglycine fully inhibited glutamate agonist-induced PI breakdown. A brief pretreatment of the astroglial cells with phorbol esters negated these effects of EAA receptor agonists, suggesting a feedback role for protein kinase C in phospholipase C action. Glutamate also elevated cytosolic free Ca2+ in Fura-2-loaded astroglial cells, as assessed by digital fluorescence imaging microscopy. Since a close metabolic partnership is known to exist between neurons and glia, these findings may have important functional consequences for neural cells in vivo.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验