Suppr超能文献

应用于智能功率半导体寿命数据的贝叶斯网络模型

Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data.

作者信息

Plankensteiner Kathrin, Bluder Olivia, Pilz Jürgen

机构信息

KAI-Kompetenzzentrum Automobil- und Industrieelektronik GmbH, Europastraße 8, A-9524 Villach, Austria.

Institute of Statistics, Alpen-Adria-University of Klagenfurt, Universitätsstraße 65, 9020 Klagenfurt, Austria.

出版信息

Risk Anal. 2015 Sep;35(9):1623-39. doi: 10.1111/risa.12342. Epub 2015 Feb 13.

Abstract

In this article, Bayesian networks are used to model semiconductor lifetime data obtained from a cyclic stress test system. The data of interest are a mixture of log-normal distributions, representing two dominant physical failure mechanisms. Moreover, the data can be censored due to limited test resources. For a better understanding of the complex lifetime behavior, interactions between test settings, geometric designs, material properties, and physical parameters of the semiconductor device are modeled by a Bayesian network. Statistical toolboxes in MATLAB® have been extended and applied to find the best structure of the Bayesian network and to perform parameter learning. Due to censored observations Markov chain Monte Carlo (MCMC) simulations are employed to determine the posterior distributions. For model selection the automatic relevance determination (ARD) algorithm and goodness-of-fit criteria such as marginal likelihoods, Bayes factors, posterior predictive density distributions, and sum of squared errors of prediction (SSEP) are applied and evaluated. The results indicate that the application of Bayesian networks to semiconductor reliability provides useful information about the interactions between the significant covariates and serves as a reliable alternative to currently applied methods.

摘要

在本文中,贝叶斯网络用于对从循环应力测试系统获得的半导体寿命数据进行建模。感兴趣的数据是对数正态分布的混合,代表两种主要的物理失效机制。此外,由于测试资源有限,数据可能会被删失。为了更好地理解复杂的寿命行为,通过贝叶斯网络对测试设置、几何设计、材料特性和半导体器件物理参数之间的相互作用进行建模。MATLAB®中的统计工具箱已得到扩展并应用于寻找贝叶斯网络的最佳结构并进行参数学习。由于存在删失观测值,采用马尔可夫链蒙特卡罗(MCMC)模拟来确定后验分布。对于模型选择,应用并评估了自动相关性确定(ARD)算法和拟合优度标准,如边际似然、贝叶斯因子、后验预测密度分布和预测平方误差之和(SSEP)。结果表明,将贝叶斯网络应用于半导体可靠性可提供有关重要协变量之间相互作用的有用信息,并可作为当前应用方法的可靠替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验