Suppr超能文献

用于脑磁图神经成像数据的时空贝叶斯推理偶极子分析

Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data.

作者信息

Jun Sung C, George John S, Paré-Blagoev Juliana, Plis Sergey M, Ranken Doug M, Schmidt David M, Wood C C

机构信息

Biological and Quantum Physics Group, MS D454, Los Alamos National Laboratory, NM 87545, USA.

出版信息

Neuroimage. 2005 Oct 15;28(1):84-98. doi: 10.1016/j.neuroimage.2005.06.003. Epub 2005 Jul 15.

Abstract

Recently, we described a Bayesian inference approach to the MEG/EEG inverse problem that used numerical techniques to estimate the full posterior probability distributions of likely solutions upon which all inferences were based [Schmidt, D.M., George, J.S., Wood, C.C., 1999. Bayesian inference applied to the electromagnetic inverse problem. Human Brain Mapping 7, 195; Schmidt, D.M., George, J.S., Ranken, D.M., Wood, C.C., 2001. Spatial-temporal bayesian inference for MEG/EEG. In: Nenonen, J., Ilmoniemi, R. J., Katila, T. (Eds.), Biomag 2000: 12th International Conference on Biomagnetism. Espoo, Norway, p. 671]. Schmidt et al. (1999) focused on the analysis of data at a single point in time employing an extended region source model. They subsequently extended their work to a spatiotemporal Bayesian inference analysis of the full spatiotemporal MEG/EEG data set. Here, we formulate spatiotemporal Bayesian inference analysis using a multi-dipole model of neural activity. This approach is faster than the extended region model, does not require use of the subject's anatomical information, does not require prior determination of the number of dipoles, and yields quantitative probabilistic inferences. In addition, we have incorporated the ability to handle much more complex and realistic estimates of the background noise, which may be represented as a sum of Kronecker products of temporal and spatial noise covariance components. This reduces the effects of undermodeling noise. In order to reduce the rigidity of the multi-dipole formulation which commonly causes problems due to multiple local minima, we treat the given covariance of the background as uncertain and marginalize over it in the analysis. Markov Chain Monte Carlo (MCMC) was used to sample the many possible likely solutions. The spatiotemporal Bayesian dipole analysis is demonstrated using simulated and empirical whole-head MEG data.

摘要

最近,我们描述了一种用于脑磁图/脑电图逆问题的贝叶斯推理方法,该方法使用数值技术来估计所有推理所基于的可能解的完整后验概率分布[施密特,D.M.,乔治,J.S.,伍德,C.C.,1999年。贝叶斯推理应用于电磁逆问题。《人类脑图谱》7,195;施密特,D.M.,乔治,J.S.,兰肯,D.M.,伍德,C.C.,2001年。脑磁图/脑电图的时空贝叶斯推理。载于:内诺宁,J.,伊尔莫涅米,R.J.,卡蒂拉,T.(编),《生物磁学2000:第12届国际生物磁学会议》。挪威埃斯波,第671页]。施密特等人(1999年)专注于使用扩展区域源模型对单个时间点的数据进行分析。随后,他们将工作扩展到对完整时空脑磁图/脑电图数据集的时空贝叶斯推理分析。在这里,我们使用神经活动的多偶极子模型来制定时空贝叶斯推理分析。这种方法比扩展区域模型更快,不需要使用受试者的解剖信息,不需要事先确定偶极子的数量,并且能产生定量概率推理。此外,我们已具备处理更复杂和现实的背景噪声估计的能力,背景噪声可表示为时间和空间噪声协方差分量的克罗内克积之和。这减少了噪声建模不足的影响。为了降低多偶极子公式的刚性,多偶极子公式通常会因多个局部最小值而导致问题,我们将给定的背景协方差视为不确定,并在分析中对其进行边缘化。马尔可夫链蒙特卡罗(MCMC)用于对许多可能的可能解进行采样。使用模拟和经验性全脑脑磁图数据演示了时空贝叶斯偶极子分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验