Diao Jiajie, Liu Rong, Rong Yueguang, Zhao Minglei, Zhang Jing, Lai Ying, Zhou Qiangjun, Wilz Livia M, Li Jianxu, Vivona Sandro, Pfuetzner Richard A, Brunger Axel T, Zhong Qing
1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.
1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [3] College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Nature. 2015 Apr 23;520(7548):563-6. doi: 10.1038/nature14147. Epub 2015 Feb 9.
Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.
自噬是一种重要的分解代谢途径,与多种人类疾病相关,其起始于形成包裹胞质内物质的双膜自噬体,并以自噬体与溶酶体融合进行降解而告终。膜融合活性对于自噬体的早期生物发生和溶酶体中的后期降解至关重要。然而,自噬性膜系留和融合的关键调控机制在很大程度上仍不清楚。在此,我们报道了ATG14(也称为与贝克林1相关的自噬相关关键调节因子(Barkor)或ATG14L),它是III类磷脂酰肌醇3激酶复合物中一种必需的自噬特异性调节因子,可促进无蛋白脂质体的膜系留,并增强用靶标(t)-SNAREs(可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体) syntaxin 17(STX17)和SNAP29以及囊泡(v)-SNARE VAMP8(囊泡相关膜蛋白8)重构的蛋白脂质体的半融合和完全融合。ATG14通过其卷曲螺旋结构域与STX17的SNARE核心结构域结合,并稳定自噬体上的STX17-SNAP29二元t-SNARE复合物。ATG14的STX17结合、膜系留和融合增强活性需要其通过半胱氨酸重复序列进行同源寡聚化。在ATG14同源寡聚化缺陷细胞中,自噬体仍能有效形成,但它们与内溶酶体的融合被阻断。重组ATG14同源寡聚化突变体在体外也完全丧失了促进膜系留和增强SNARE介导的融合的能力。综上所述,我们的数据表明了一种自噬特异性膜融合机制,其中寡聚化的ATG14直接与自噬体上的STX17-SNAP29二元t-SNARE复合物结合,并使其为与VAMP8相互作用做好准备,以促进自噬体-内溶酶体融合。