From the Emmy Noether Group of the DFG, European Heart Research Institute Göttingen, Göttingen, Germany (R.K.P., J.U.S., D.H., V.O.N.); Heart Research Center Göttingen, Georg August University Medical Center, Göttingen, Germany (R.K.P., J.U.S., J.H.S., D.H., S.E.L., A.E.-A., V.O.N.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.K.P, J.U.S., V.O.N.); German Center for Cardiovascular Research (DZHK; S.E.L., V.O.N.) and Instutite of Physiology (M.A., K.S.), University of Würzburg, Würzburg, Germany; and Institute of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany (A.E.-A).
Circ Res. 2015 Apr 10;116(8):1304-11. doi: 10.1161/CIRCRESAHA.116.306082. Epub 2015 Feb 16.
Cyclic nucleotides are second messengers that regulate cardiomyocyte function through compartmentalized signaling in discrete subcellular microdomains. However, the role of different microdomains and their changes in cardiac disease are not well understood.
To directly visualize alterations in β-adrenergic receptor-associated cAMP and cGMP microdomain signaling in early cardiac disease.
Unexpectedly, measurements of cell shortening revealed augmented β-adrenergic receptor-stimulated cardiomyocyte contractility by atrial natriuretic peptide/cGMP signaling in early cardiac hypertrophy after transverse aortic constriction, which was in sharp contrast to well-documented β-adrenergic and natriuretic peptide signaling desensitization during chronic disease. Real-time cAMP analysis in β1- and β2-adrenergic receptor-associated membrane microdomains using a novel membrane-targeted Förster resonance energy transfer-based biosensor transgenically expressed in mice revealed that this unexpected atrial natriuretic peptide effect is brought about by spatial redistribution of cGMP-sensitive phosphodiesterases 2 and 3 between both receptor compartments. Functionally, this led to a significant shift in cGMP/cAMP cross-talk and, in particular, to cGMP-driven augmentation of contractility in vitro and in vivo.
Redistribution of cGMP-regulated phosphodiesterases and functional reorganization of receptor-associated microdomains occurs in early cardiac hypertrophy, affects cGMP-mediated contractility, and might represent a previously not recognized therapeutically relevant compensatory mechanism to sustain normal heart function.
环核苷酸是通过离散的亚细胞微域中的区室化信号来调节心肌细胞功能的第二信使。然而,不同微域的作用及其在心脏疾病中的变化尚不清楚。
直接观察早期心脏疾病中β-肾上腺素能受体相关的 cAMP 和 cGMP 微域信号的变化。
出乎意料的是,细胞缩短的测量结果显示,在横主动脉缩窄后的早期心脏肥大中,心钠肽/cGMP 信号通过增加β-肾上腺素能受体刺激的心肌细胞收缩力,这与慢性疾病中众所周知的β-肾上腺素能和心钠肽信号脱敏形成鲜明对比。使用在小鼠中转基因表达的新型膜靶向Förster 共振能量转移(FRET)基于生物传感器实时分析β1-和β2-肾上腺素能受体相关膜微域中的 cAMP 表明,这种出乎意料的心钠肽作用是由 cGMP 敏感的磷酸二酯酶 2 和 3 在两种受体隔室之间的空间重新分布引起的。从功能上讲,这导致了 cGMP/cAMP 串扰的显著变化,特别是 cGMP 驱动的体外和体内收缩性增强。
cGMP 调节的磷酸二酯酶的重分布和受体相关微域的功能重组发生在早期心脏肥大中,影响 cGMP 介导的收缩性,并且可能代表一种以前未被认识到的治疗相关代偿机制,以维持正常的心脏功能。