Henriques Gisela, van Schalkwyk Donelly A, Burrow Rebekah, Warhurst David C, Thompson Eloise, Baker David A, Fidock David A, Hallett Rachel, Flueck Christian, Sutherland Colin J
Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Antimicrob Agents Chemother. 2015 May;59(5):2540-7. doi: 10.1128/AAC.04067-14. Epub 2015 Feb 17.
The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.
耐药性疟原虫的出现是疟疾控制项目面临的严重威胁。了解耐药性的遗传基础对于治疗和干预策略的成功至关重要。最近在对啮齿动物疟原虫查巴迪疟原虫(pcap2-mu)的研究中,发现了一个与抗疟耐药性相关的新基因座ap2-mu(编码衔接蛋白2 [AP2] 复合物的μ链)。此外,对肯尼亚疟疾患者中恶性疟原虫ap2-mu同源物pfap2-mu的多态性分析发现,有证据表明密码子160编码的氨基酸差异与包括青蒿素衍生物在内的联合治疗后体内寄生虫存活率的提高有关。在此,我们通过构建组成型表达编码野生型Ser(Ser160)或Asn突变体(160Asn)形式的pfap2-mu密码子160的转基因寄生虫,来表征pfap2-mu在介导恶性疟原虫体外抗疟药物反应中的作用。使用标准的48小时体外试验,携带pfap2-mu 160Asn等位基因的转基因寄生虫对双氢青蒿素的敏感性显著降低,这为寄生虫对青蒿素反应的改变提供了直接证据。我们的数据还提供了证据表明pfap2-mu变体可以调节寄生虫对奎宁的敏感性。未发现证据表明pfap2-mu变体与接受青蒿琥酯单药治疗的柬埔寨患者中恶性疟原虫表现出的清除缓慢表型有关。这些发现提供了令人信服的证据,表明pfap2-mu可以调节恶性疟原虫对多种药物的反应。我们建议应进一步评估该基因作为抗疟耐药性潜在分子标志物的可能性。