Suppr超能文献

用于蛋白质结构预测的基于距离依赖原子对的优化势DOOP

Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.

作者信息

Chae Myong-Ho, Krull Florian, Knapp Ernst-Walter

机构信息

Department of Biology, University of Science, Unjong-District, Pyongyang, DPR Korea.

出版信息

Proteins. 2015 May;83(5):881-90. doi: 10.1002/prot.24782. Epub 2015 Mar 25.

Abstract

The DOcking decoy-based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance-dependent atom-pair interactions. To optimize the atom-pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand-receptor systems (or just pairs). Thus, a total of 8609 ligand-receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand-receptor systems, 1000 evenly sampled docking decoys with 0-10 Å interface root-mean-square-deviation (iRMSD) were generated with a method used before for protein-protein docking. A neural network-based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel-like energy landscape for the interaction between these hypothetical ligand-receptor systems. Thus, our method hierarchically models the overall funnel-like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom-pair-based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation-dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand-receptor systems and their decoys are freely available at http://agknapp.chemie.fu-berlin.de/doop/.

摘要

用于蛋白质结构预测的基于对接诱饵的优化势能(DOOP)能量函数基于经验性的距离依赖原子对相互作用。为了优化原子对相互作用,天然蛋白质结构被分解为对应于涉及完整二级结构元件的结构基序的多肽链段。它们构成了近天然的配体 - 受体系统(或仅为对)。因此,从954个选定的蛋白质中制备了总共8609个配体 - 受体系统。对于这些假设的配体 - 受体系统中的每一个,使用之前用于蛋白质 - 蛋白质对接的方法生成1000个均匀采样的对接诱饵,其界面均方根偏差(iRMSD)为0 - 10 Å。应用基于神经网络的优化方法使用这些诱饵来推导优化的能量参数,以使能量函数模拟这些假设的配体 - 受体系统之间相互作用的漏斗状能量景观。因此,我们的方法分层模拟了天然蛋白质结构的整体漏斗状能量景观。所得的能量函数在几个常用的诱饵集上进行了天然蛋白质结构识别测试,并与其他统计势能进行了比较。结合描述局部构象偏好的扭转势能项,基于原子对的势能在对各种诱饵集的天然蛋白质结构进行正确排序方面优于其他报道的统计能量函数。对于最具挑战性的ROSETTA诱饵集尤其如此,尽管它没有明确考虑侧链取向依赖性。用于蛋白质结构预测的DOOP能量函数、具有假设配体 - 受体系统及其诱饵的蛋白质结构基础数据库可在http://agknapp.chemie.fu-berlin.de/doop/免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验