Jalilehvand Farideh, Sisombath Natalie S, Schell Adam C, Facey Glenn A
Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
Inorg Chem. 2015 Mar 2;54(5):2160-70. doi: 10.1021/ic5025668. Epub 2015 Feb 19.
The lead(II) complexes formed with the multidentate chelator L-cysteine (H2Cys) in an alkaline aqueous solution were studied using (207)Pb, (13)C, and (1)H NMR, Pb LIII-edge X-ray absorption, and UV-vis spectroscopic techniques, complemented by electrospray ion mass spectrometry (ESI-MS). The H2Cys/Pb(II) mole ratios were varied from 2.1 to 10.0 for two sets of solutions with CPb(II) = 0.01 and 0.1 M, respectively, prepared at pH values (9.1-10.4) for which precipitates of lead(II) cysteine dissolved. At low H2Cys/Pb(II) mole ratios (2.1-3.0), a mixture of the dithiolate Pb(S,N-Cys)2 and Pb(S,N,O-Cys)(S-HCys) complexes with average Pb-(N/O) and Pb-S distances of 2.42 ± 0.04 and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (>0.7 M), a significant amount converts to the trithiolate Pb(S,N-Cys)(S-HCys)2, including a minor amount of a PbS3-coordinated Pb(S-HCys)3 complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra and by examining the (207)Pb NMR signals in the chemical shift range δPb = 2006-2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic-angle-spinning (MAS) (207)Pb NMR spectra of crystalline Pb(aet)2 (Haet = 2-aminoethanethiol or cysteamine) with PbS2N2 coordination were measured for comparison (δiso = 2105 ppm). The UV-vis spectra displayed absorption maxima at 298-300 nm (S(-) → Pb(II) charge transfer) for the dithiolate PbS2N(N/O) species; with increasing ligand excess, a shoulder appeared at ∼330 nm for the trithiolate PbS3N and PbS3 (minor) complexes. The results provide spectroscopic fingerprints for structural models for lead(II) coordination modes to proteins and enzymes.
采用(^{207}Pb)、(^{13}C)和(^{1}H)核磁共振、铅(L_{III})边X射线吸收以及紫外可见光谱技术,并辅以电喷雾离子质谱(ESI-MS),研究了在碱性水溶液中与多齿螯合剂L-半胱氨酸((H_2Cys))形成的铅(II)配合物。对于两组溶液,(H_2Cys/Pb(II))摩尔比分别在2.1至10.0之间变化,其中(C_{Pb(II)})分别为0.01和0.1 M,在pH值(9.1 - 至10.4)下制备,此时铅(II)半胱氨酸沉淀溶解。在低(H_2Cys/Pb(II))摩尔比(2.1 - 3.0)时,发现二硫醇盐([Pb(S,N - Cys)_2]^{2 - })和([Pb(S,N,O - Cys)(S - HCys)]^{ - })配合物的混合物占主导,其平均(Pb-(N/O))和(Pb - S)距离分别为2.42 ± 0.04 Å和2.64 ± 0.04 Å。在游离半胱氨酸盐浓度较高(>0.7 M)时,大量转化为三硫醇盐([Pb(S,N - Cys)(S - HCys)_2]^{2 - }),包括少量(PbS_3)配位的([Pb(S - HCys)3]^{ - })配合物。通过将扩展X射线吸收精细结构(EXAFS)振荡的线性组合拟合到实验光谱,并检查化学位移范围(\delta{Pb}=2006 - 2507 ppm)内的(^{207}Pb)核磁共振信号来评估配位模式,该信号随着游离半胱氨酸盐浓度的增加而越来越去屏蔽。测量了具有(PbS_2N_2)配位的结晶(Pb(aet)2)((Haet = 2 - 氨基乙硫醇或半胱胺)的单脉冲魔角旋转(MAS)(^{207}Pb)核磁共振光谱用于比较((\delta{iso}=2105 ppm))。紫外可见光谱显示,对于二硫醇盐(PbS_2N(N/O))物种,在298 - 300 nm处有吸收最大值((S^ - \to Pb(II))电荷转移);随着配体过量增加,对于三硫醇盐(PbS_3N)和(PbS_3)(少量)配合物,在约330 nm处出现一个肩峰。这些结果为铅(II)与蛋白质和酶的配位模式的结构模型提供了光谱指纹。