Suppr超能文献

聚乳酸-羟基乙酸共聚物包裹地西泮纳米粒的鼻脑给药

Nose-To-Brain Delivery of PLGA-Diazepam Nanoparticles.

作者信息

Sharma Deepak, Sharma Rakesh Kumar, Sharma Navneet, Gabrani Reema, Sharma Sanjeev K, Ali Javed, Dang Shweta

机构信息

Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP, 201307, India.

Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, 110054, India.

出版信息

AAPS PharmSciTech. 2015 Oct;16(5):1108-21. doi: 10.1208/s12249-015-0294-0. Epub 2015 Feb 21.

Abstract

The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148-337 d.nm, polydispersity index 0.04-0.45, drug entrapment 69-92%, and zeta potential in the range of -15 to -29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled ((99m)Tc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23-1.45, 258, and 61% for (99m)Tc-DNP (i.n) compared to (99m)Tc-DS (i.n) (0.38-1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.

摘要

本研究的目的是优化载有地西泮(Dzp)的聚乳酸-羟基乙酸共聚物纳米颗粒(NP),以通过鼻内给药实现脑内递送。通过纳米沉淀法制备Dzp纳米颗粒(DNP),并使用Box-Behnken设计进行优化。研究了各种独立工艺变量(聚合物、表面活性剂、水相与有机相(w/o)比例和药物)对DNP最终性质(z-平均粒径和药物包封率)的影响。所制备的DNP的z-平均粒径为148 - 337 d.nm,多分散指数为0.04 - 0.45,药物包封率为69 - 92%,zeta电位在-15至-29.24 mV范围内。通过差示扫描量热法(DSC)、傅里叶变换红外光谱法(FTIR)、体外药物释放和体外细胞毒性对优化后的DNP进行进一步分析。通过羊鼻黏膜对DNP进行的体外药物释放研究表明,24小时内药物控释率为64.4%。对Vero细胞系进行的3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐(MTT)试验表明,与Dzp混悬液(DS)相比,DNP的毒性较小。使用99m锝标记(99mTc)的Dzp制剂对Sprague-Dawley大鼠进行DNP和DS的γ闪烁显像及生物分布研究,以研究鼻-脑给药途径。与(99m)Tc-DS(鼻内给药)(0.38 - 1.06、125和1%)相比,(99m)Tc-DNP(鼻内给药)的脑/血摄取率、药物靶向效率和直接鼻-脑转运分别为1.23 - 1.45、258和61%。闪烁显像图像显示Dzp从鼻到脑的摄取,这一观察结果与生物分布结果一致。这些结果表明,所制备的聚(D,L-丙交酯-共-乙交酯)(PLGA)纳米颗粒可作为Dzp的潜在载体,用于癫痫持续状态门诊治疗中的鼻-脑给药。

相似文献

1
Nose-To-Brain Delivery of PLGA-Diazepam Nanoparticles.
AAPS PharmSciTech. 2015 Oct;16(5):1108-21. doi: 10.1208/s12249-015-0294-0. Epub 2015 Feb 21.
2
Nose to Brain Delivery of Midazolam Loaded PLGA Nanoparticles: In Vitro and In Vivo Investigations.
Curr Drug Deliv. 2016;13(4):557-64. doi: 10.2174/1567201812666150507120124.
4
Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles.
Drug Deliv Transl Res. 2019 Oct;9(5):879-890. doi: 10.1007/s13346-019-00622-5.
5
Baclofen-Loaded Poly (D,L-Lactide-Co-Glycolic Acid) Nanoparticles for Neuropathic Pain Management: and Evaluation.
Rejuvenation Res. 2019 Jun;22(3):235-245. doi: 10.1089/rej.2018.2119. Epub 2018 Oct 11.
6
Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies.
Colloids Surf B Biointerfaces. 2016 Jun 1;142:307-314. doi: 10.1016/j.colsurfb.2016.02.026. Epub 2016 Feb 27.
8
Brain targeting with surface-modified poly(D,L-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration.
Eur J Pharm Biopharm. 2011 Jan;77(1):84-8. doi: 10.1016/j.ejpb.2010.11.002. Epub 2010 Nov 11.
9
Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies.
Acta Biomater. 2011 Dec;7(12):4169-76. doi: 10.1016/j.actbio.2011.07.025. Epub 2011 Jul 30.
10
Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
Drug Dev Ind Pharm. 2009 Nov;35(11):1375-83. doi: 10.3109/03639040902939221.

引用本文的文献

3
In Vitro Evaluation of the Efficient Passage of PLGA-Formulated Trastuzumab for Nose-to-Brain Delivery.
Pharmaceutics. 2025 May 22;17(6):681. doi: 10.3390/pharmaceutics17060681.
5
Intranasal delivery of imaging agents to the brain.
Theranostics. 2024 Aug 19;14(13):5022-5101. doi: 10.7150/thno.98473. eCollection 2024.
7
Challenges and prospects in geriatric epilepsy treatment: the role of the blood-brain barrier in pharmacotherapy and drug delivery.
Front Aging Neurosci. 2024 Feb 8;16:1342366. doi: 10.3389/fnagi.2024.1342366. eCollection 2024.

本文引用的文献

1
Nanoparticles for brain drug delivery.
ISRN Biochem. 2013 May 21;2013:238428. doi: 10.1155/2013/238428. eCollection 2013.
2
Dosing feasibility and tolerability of intranasal diazepam in adults with epilepsy.
Epilepsia. 2014 Oct;55(10):1544-50. doi: 10.1111/epi.12755. Epub 2014 Aug 25.
5
Assessment of pharmacokinetics and tolerability of intranasal diazepam relative to rectal gel in healthy adults.
Epilepsy Res. 2014 Sep;108(7):1204-11. doi: 10.1016/j.eplepsyres.2014.04.007. Epub 2014 May 13.
10
Preparation and characterization of poly(ε-caprolactone) nanospheres containing the local anesthetic lidocaine.
J Pharm Sci. 2013 Jan;102(1):215-26. doi: 10.1002/jps.23350. Epub 2012 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验