Goncalves Nuno R, Ban Hiroshi, Sánchez-Panchuelo Rosa M, Francis Susan T, Schluppeck Denis, Welchman Andrew E
Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom.
Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan, Graduate School of Frontier Biosciences, Osaka University, Suita City, Osaka 565-0871, Japan, and.
J Neurosci. 2015 Feb 18;35(7):3056-72. doi: 10.1523/JNEUROSCI.3047-14.2015.
The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception.
左右眼所记录的关于世界的视图之间的双眼视差提供了有关环境深度结构的有力信号。尽管从动物模型中对处理视差的皮层区域的了解越来越多,但对于人类大脑中立体视觉处理的局部结构却知之甚少。在这里,我们利用7特斯拉功能磁共振成像(fMRI)提供的高空间特异性和图像对比度,来测试人类大脑中视差表征的系统组织。参与者观看描绘不同深度位置的随机点立体图刺激,同时我们记录背内侧视觉皮层的fMRI反应。我们在三个独立的成像 session 中重复测量。使用一系列计算建模方法,我们在理解人类大脑视差组织方面报告了三个主要进展。首先,我们表明视差偏好是聚类的,并且这种组织在成像 session 中持续存在,特别是在V3A区域。其次,我们观察到早期视觉区域和背内侧视觉区域中体素反应的局部分布存在差异,这表明皮层组织不同。第三,通过体素反应建模,我们表明较高的背侧区域(V3A、V3B/KO)具有人类深度判断的特征属性:一个使用从fMRI数据估计的调谐参数的简单模型捕获了人类心理物理性能中的已知变化。总之,这些发现表明人类背侧视觉皮层包含对视差具有选择性的皮层结构,这可能支持深度感知背后的神经计算。