Mehta-Hurt Deepali N, Korn Joseph A, Gutberlet Anna K, Zwier Timothy S
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States.
J Phys Chem A. 2015 Mar 26;119(12):2863-77. doi: 10.1021/acs.jpca.5b00099. Epub 2015 Mar 5.
The ultraviolet spectroscopy of isoelectronic pair para-diisocyanobenzene (pDIB) and para-isocyanobenzonitrile (pIBN) has been studied under gas-phase, jet-cooled conditions. These molecules complete a sequence of mono and disubstituted nitrile/isonitrile benzene derivatives, enabling a comparison of the electronic effects of such substitution. Utilizing laser-induced fluorescence (LIF) and resonant two-photon ionization (R2PI) spectroscopy, the S0-S1 electronic origins of pDIB and pIBN have been identified at 35,566 and 35,443 cm(-1), respectively. In pDIB, the S0-S1 origin is very weak, with b(3g) fundamentals induced by vibronic coupling to the S2 state dominating the spectrum at 501 cm(-1) (ν17, isocyano bend) and 650 cm(-1) (ν16, ring distortion). The spectrum extends over 5000 cm(-1), remaining sharp and relatively uncongested over much of this range. Dispersed fluorescence (DFL) spectra confirm the dominating role played by vibronic coupling and identify Franck-Condon active ring modes built off the vibronically-induced bands. In pDIB, the S2 state has been tentatively observed at about 6100 cm(-1) above the S0-S1 origin. In pIBN, the S0-S1 origin is considerably stronger, but vibronic coupling still plays an important role, involving fundamentals of b2 symmetry. The bending mode of the nitrile group dominates the vibronically-induced activity. Calculations carried out at the TD-DFT B3LYP/6-31+G(d) level of theory account for the extremely weak S0-S1 oscillator strength of pDIB and the larger intensity of the S0-S1 origins of pIBN and pDCB (para-dicyanobenzene) as nitrile groups are substituted for isonitrile groups. In pDIB, a nearly perfect cancellation of transition dipoles occurs due to two one-electron transitions that contribute nearly equally to the S0-S1 transition. The spectra of both molecules show no clear evidence of charge-transfer interactions that play such an important role in some cyanobenzene derivatives.
在气相、喷射冷却条件下研究了等电子对——对二异氰基苯(pDIB)和对异氰基苯甲腈(pIBN)的紫外光谱。这些分子构成了一系列单取代和双取代的腈/异腈苯衍生物,从而能够比较此类取代的电子效应。利用激光诱导荧光(LIF)和共振双光子电离(R2PI)光谱,已分别在35566和35443 cm⁻¹处确定了pDIB和pIBN的S₀ - S₁电子起源。在pDIB中,S₀ - S₁起源非常弱,通过与S₂态的振动耦合诱导的b(₃g)基频在501 cm⁻¹(ν₁₇,异氰基弯曲)和650 cm⁻¹(ν₁₆,环变形)处主导光谱。光谱范围超过5000 cm⁻¹,在该范围的大部分区域保持尖锐且相对不拥挤。色散荧光(DFL)光谱证实了振动耦合所起的主导作用,并确定了基于振动诱导带的弗兰克 - 康登活性环模式。在pDIB中,已初步观察到S₂态在S₀ - S₁起源上方约6100 cm⁻¹处。在pIBN中,S₀ - S₁起源要强得多,但振动耦合仍然起着重要作用,涉及b₂对称性的基频。腈基的弯曲模式主导了振动诱导活性。在TD - DFT B3LYP/6 - 31 + G(d)理论水平上进行的计算解释了pDIB极其微弱的S₀ - S₁振子强度以及当腈基取代异腈基时pIBN和对二氰基苯(pDCB)的S₀ - S₁起源的较大强度。在pDIB中,由于两个对S₀ - S₁跃迁贡献几乎相等的单电子跃迁,跃迁偶极矩几乎完全抵消。这两种分子的光谱均未显示出在某些氰基苯衍生物中起重要作用的电荷转移相互作用的明显证据。