Kosaka Hideo, Niikura Naeko
Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan.
Phys Rev Lett. 2015 Feb 6;114(5):053603. doi: 10.1103/PhysRevLett.114.053603. Epub 2015 Feb 5.
Quantum entanglement, a key resource for quantum information science, is inherent in a solid. It has been recently shown that entanglement between a single optical photon and a single spin qubit in a solid is generated via spontaneous emission. However, entanglement generation by measurement is rather essential for quantum operations. We here show that the physics behind the entangled emission can be time reversed to demonstrate entangled absorption mediated by an inherent spin-orbit entanglement in a single nitrogen vacancy center in diamond. Optical arbitrary spin state preparation and complete spin state tomography reveal the fidelity of the entangled absorption to be 95%. With the entangled emission and absorption of a photon, materials can be spontaneously entangled or swap their quantum state based on the quantum teleportation scheme.
量子纠缠作为量子信息科学的关键资源,存在于固体之中。最近的研究表明,固体中单个光学光子与单个自旋量子比特之间的纠缠是通过自发发射产生的。然而,通过测量产生纠缠对于量子操作而言至关重要。我们在此表明,纠缠发射背后的物理过程可以时间反转,以证明在金刚石中的单个氮空位中心,由固有自旋 - 轨道纠缠介导的纠缠吸收。光学任意自旋态制备和完整的自旋态断层扫描显示,纠缠吸收的保真度为95%。通过光子的纠缠发射和吸收,材料可以自发地纠缠或根据量子隐形传态方案交换它们的量子态。