Suppr超能文献

使用潜在类别轨迹模型刻画中国体重变化的长期模式。

Characterizing long-term patterns of weight change in China using latent class trajectory modeling.

作者信息

Paynter Lauren, Koehler Elizabeth, Howard Annie Green, Herring Amy H, Gordon-Larsen Penny

机构信息

Department of Nutrition, Gillings School of Global Public Health at the University of North Carolina, Chapel Hill NC, United States of America.

Department of Biostatistics, Gillings School of Global Public Health at the University of North Carolina, Chapel Hill NC, United States of America.

出版信息

PLoS One. 2015 Feb 20;10(2):e0116190. doi: 10.1371/journal.pone.0116190. eCollection 2015.

Abstract

BACKGROUND

Over the past three decades, obesity-related diseases have increased tremendously in China, and are now the leading causes of morbidity and mortality. Patterns of weight change can be used to predict risk of obesity-related diseases, increase understanding of etiology of disease risk, identify groups at particularly high risk, and shape prevention strategies.

METHODS

Latent class trajectory modeling was used to compute weight change trajectories for adults aged 18 to 66 using the China Health and Nutrition Survey (CHNS) data (n = 12,611). Weight change trajectories were computed separately for males and females by age group at baseline due to differential age-related patterns of weight gain in China with urbanization. Generalized linear mixed effects models examined the association between weight change trajectories and baseline characteristics including urbanicity, BMI category, age, and year of study entry.

RESULTS

Trajectory classes were identified for each of six age-sex subgroups corresponding to various degrees of weight loss, maintenance and weight gain. Baseline BMI status was a significant predictor of trajectory membership for all age-sex subgroups. Baseline overweight/obesity increased odds of following 'initial loss with maintenance' trajectories. We found no significant association between baseline urbanization and trajectory membership after controlling for other covariates.

CONCLUSION

Trajectory analysis identified patterns of weight change for age by gender groups. Lack of association between baseline urbanization status and trajectory membership suggests that living in a rural environment at baseline was not protective. Analyses identified age-specific nuances in weight change patterns, pointing to the importance of subgroup analyses in future research.

摘要

背景

在过去三十年中,中国与肥胖相关的疾病大幅增加,目前已成为发病和死亡的主要原因。体重变化模式可用于预测肥胖相关疾病的风险,增进对疾病风险病因的理解,识别特别高危人群,并制定预防策略。

方法

使用潜在类别轨迹模型,利用中国健康与营养调查(CHNS)数据(n = 12,611)计算18至66岁成年人的体重变化轨迹。由于中国城市化进程中不同年龄组体重增加模式存在差异,因此按基线年龄组分别计算男性和女性的体重变化轨迹。广义线性混合效应模型检验了体重变化轨迹与基线特征(包括城市化程度、BMI类别、年龄和研究进入年份)之间的关联。

结果

确定了六个年龄 - 性别亚组各自对应的轨迹类别,分别对应不同程度的体重减轻、维持和体重增加。基线BMI状态是所有年龄 - 性别亚组轨迹归属的重要预测因素。基线超重/肥胖增加了遵循“先减重后维持”轨迹的几率。在控制其他协变量后,我们发现基线城市化与轨迹归属之间无显著关联。

结论

轨迹分析确定了按性别划分的年龄组体重变化模式。基线城市化状态与轨迹归属之间缺乏关联表明,基线时生活在农村环境并无保护作用。分析确定了体重变化模式中特定年龄的细微差别,表明亚组分析在未来研究中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df2b/4336139/ffe76f8776d3/pone.0116190.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验