Schitine Clarissa S, Mendez-Flores Orquidia G, Santos Luis E, Ornelas Isis, Calaza Karin C, Pérez-Toledo Karla, López-Bayghen Esther, Ortega Arturo, Gardino Patrícia F, de Mello Fernando G, Reis Ricardo A M
Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Dept. Genética y Biología Molecular, Ciudad de Mexico, Mexico.
Neurochem Int. 2015 Mar;82:42-51. doi: 10.1016/j.neuint.2015.02.004. Epub 2015 Feb 17.
GABA (γ-amino butyric acid) is the major inhibitory transmitter in the central nervous system and its action is terminated by specific transporters (GAT), found in neurons and glial cells. We have previously described that GAT-3 is responsible for GABA uptake activity in cultured avian Müller cells and that it operates in a Na(+) and Cl(-) dependent manner. Here we show that glutamate decreases [(3)H] GABA uptake in purified cultured glial cells up to 50%, without causing cell death. This effect is mediated by ionotropic glutamatergic receptors. Glutamate inhibition on GABA uptake is not reverted by inhibitors of protein kinase C or modified by agents that modulate cyclic AMP/PKA. Biotinylation experiments demonstrate that this reduction in GABA uptake correlates with a decrease in GAT-3 plasma membrane levels. Interestingly, both GAT-1 and GAT-3 mRNA levels are also decreased by glutamate. Conditioned media (CM) prepared from retinal neurons could also decrease GABA influx, and glutamate receptor antagonists (MK-801 + CNQX) were able to prevent this effect. However, glutamate levels in CM were not different from those found in fresh media, indicating that a glutamatergic co-agonist or modulator could be regulating GABA uptake by Müller cells in this scenario. In the whole avian retina, GAT-3 is present from embryonic day 5 (E5) increasing up to the end of embryonic development and post-hatch period exclusively in neuronal layers. However, this pattern may change in pathological conditions, which drive GAT-3 expression in Müller cells. Our data suggest that in purified cultures and upon extensive neuronal lesion in vivo, shown as a Brn3a reduced neuronal cells and an GFAP increased gliosis, Müller glia may change its capacity to take up GABA due to GAT-3 up regulation and suggests a regulatory interplay mediated by glutamate between neurons and glial cells in this process.
γ-氨基丁酸(GABA)是中枢神经系统中的主要抑制性神经递质,其作用通过存在于神经元和神经胶质细胞中的特定转运体(GAT)来终止。我们之前曾描述过,GAT-3负责培养的禽类米勒细胞中的GABA摄取活性,并且其以依赖Na(+)和Cl(-)的方式运作。在此我们表明,谷氨酸可使纯化培养的神经胶质细胞中[(3)H] GABA摄取降低达50%,且不会导致细胞死亡。这种效应由离子型谷氨酸能受体介导。谷氨酸对GABA摄取的抑制作用不能被蛋白激酶C抑制剂逆转,也不受调节环磷酸腺苷/蛋白激酶A的试剂影响。生物素化实验表明,GABA摄取的这种降低与GAT-3质膜水平的下降相关。有趣的是,谷氨酸也会使GAT-1和GAT-3的mRNA水平降低。由视网膜神经元制备的条件培养基(CM)也可降低GABA内流,并且谷氨酸受体拮抗剂(MK-801 + CNQX)能够阻止这种效应。然而,CM中的谷氨酸水平与新鲜培养基中的并无差异,这表明在这种情况下,一种谷氨酸能共激动剂或调节剂可能在调节米勒细胞对GABA的摄取。在整个禽类视网膜中,GAT-3从胚胎第5天(E5)开始存在,在胚胎发育结束和孵化后阶段仅在神经层中增加。然而,在病理条件下这种模式可能会改变,病理条件会促使GAT-3在米勒细胞中表达。我们的数据表明,在纯化培养物中以及在体内广泛的神经元损伤时(表现为Brn3a阳性神经元细胞减少和GFAP阳性胶质增生增加),米勒胶质细胞可能由于GAT-3上调而改变其摄取GABA的能力,并且表明在此过程中谷氨酸介导了神经元和神经胶质细胞之间的调节相互作用。