Franck Odile, Mussard Bastien, Luppi Eleonora, Toulouse Julien
Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France.
J Chem Phys. 2015 Feb 21;142(7):074107. doi: 10.1063/1.4907920.
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
范围分离密度泛函理论(DFT)是科恩-沈密度泛函理论的一种替代方法。范围分离密度泛函理论的策略在于将库仑电子-电子相互作用分离成长程和短程分量,并通过显式多体波函数方法处理长程部分,通过密度泛函近似处理短程部分。对于电子-电子相互作用的长程部分使用多体方法的优点之一是,与标准库仑相互作用的情况相比,它们对单电子原子基的敏感性要低得多。在此,我们对范围分离密度泛函理论的基收敛性进行了详细研究。我们研究了电子-电子合并附近长程波函数的分波展开的收敛性。我们表明,长程波函数的收敛速率相对于最大角动量L是指数型的,而对于库仑相互作用的情况则是多项式型的。我们还研究了四个体系(He、Ne、N₂和H₂O)在邓宁基组cc - p(C)V XZ的基数X下的长程二阶莫勒-普莱塞特相关能的收敛性,发现相关能的误差最好由X的指数函数拟合。这使我们基于指数公式为范围分离密度泛函理论提出了一种三点完全基组外推方案。