Boyd J Lomax, Skove Stephanie L, Rouanet Jeremy P, Pilaz Louis-Jan, Bepler Tristan, Gordân Raluca, Wray Gregory A, Silver Debra L
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.
Curr Biol. 2015 Mar 16;25(6):772-779. doi: 10.1016/j.cub.2015.01.041. Epub 2015 Feb 19.
The human neocortex differs from that of other great apes in several notable regards, including altered cell cycle, prolonged corticogenesis, and increased size [1-5]. Although these evolutionary changes most likely contributed to the origin of distinctively human cognitive faculties, their genetic basis remains almost entirely unknown. Highly conserved non-coding regions showing rapid sequence changes along the human lineage are candidate loci for the development and evolution of uniquely human traits. Several studies have identified human-accelerated enhancers [6-14], but none have linked an expression difference to a specific organismal trait. Here we report the discovery of a human-accelerated regulatory enhancer (HARE5) of FZD8, a receptor of the Wnt pathway implicated in brain development and size [15, 16]. Using transgenic mice, we demonstrate dramatic differences in human and chimpanzee HARE5 activity, with human HARE5 driving early and robust expression at the onset of corticogenesis. Similar to HARE5 activity, FZD8 is expressed in neural progenitors of the developing neocortex [17-19]. Chromosome conformation capture assays reveal that HARE5 physically and specifically contacts the core Fzd8 promoter in the mouse embryonic neocortex. To assess the phenotypic consequences of HARE5 activity, we generated transgenic mice in which Fzd8 expression is under control of orthologous enhancers (Pt-HARE5::Fzd8 and Hs-HARE5::Fzd8). In comparison to Pt-HARE5::Fzd8, Hs-HARE5::Fzd8 mice showed marked acceleration of neural progenitor cell cycle and increased brain size. Changes in HARE5 function unique to humans thus alter the cell-cycle dynamics of a critical population of stem cells during corticogenesis and may underlie some distinctive anatomical features of the human brain.
人类新皮质在几个显著方面与其他大型猿类不同,包括细胞周期改变、皮质发生延长和尺寸增大[1 - 5]。尽管这些进化变化很可能促成了独特的人类认知能力的起源,但其遗传基础几乎仍然完全未知。沿着人类谱系显示出快速序列变化的高度保守非编码区域是独特人类特征发育和进化的候选基因座。多项研究已鉴定出人类加速增强子[6 - 14],但尚无研究将表达差异与特定的生物体特征联系起来。在此,我们报告发现了FZD8的一个人类加速调控增强子(HARE5),FZD8是一种参与大脑发育和大小的Wnt通路受体[15, 16]。利用转基因小鼠,我们证明了人类和黑猩猩HARE5活性存在显著差异,人类HARE5在皮质发生开始时驱动早期且强劲的表达。与HARE5活性相似,FZD8在发育中的新皮质的神经祖细胞中表达[17 - 19]。染色体构象捕获分析表明,HARE5在小鼠胚胎新皮质中与Fzd8核心启动子发生物理上的特异性接触。为了评估HARE5活性的表型后果,我们构建了转基因小鼠,其中Fzd8的表达受直系同源增强子(Pt - HARE5::Fzd8和Hs - HARE5::Fzd8)的控制。与Pt - HARE5::Fzd8相比,Hs - HARE5::Fzd8小鼠显示神经祖细胞周期明显加速且脑尺寸增大。因此,人类特有的HARE5功能变化在皮质发生过程中改变了关键干细胞群体的细胞周期动态,可能是人类大脑一些独特解剖特征的基础。