Fetzer Roman, Stadtmüller Benjamin, Ohdaira Yusuke, Naganuma Hiroshi, Oogane Mikihiko, Ando Yasuo, Taira Tomoyuki, Uemura Tetsuya, Yamamoto Masafumi, Aeschlimann Martin, Cinchetti Mirko
Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schrödinger Str. 46, 67663 Kaiserslautern, Germany.
Department of Applied Physics, Graduate School of Engineering, Tohoku University, aoba-yama 6-6-05, Sendai 980-8579, Japan.
Sci Rep. 2015 Feb 23;5:8537. doi: 10.1038/srep08537.
Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.
紫外光电子能谱(UPS)是研究超薄顶层表面和界面处电子自旋及对称性特征的有力工具。然而,光电子的平均自由程非常短,这通常阻碍了对埋藏界面性质的直接探测。后者尤其令人感兴趣,因为它们对诸如磁性隧道结(MTJ)等自旋电子器件的性能有着至关重要的影响。在此,我们引入自旋分辨极低能量光电子能谱(ELEPS),以提供一种克服这一限制的有效方法。我们将ELEPS应用于半金属赫斯勒化合物Co2MnSi与绝缘体MgO之间形成的界面,该界面的制备方式与最先进的基于Co2MnSi/MgO的MTJ相同。自由Co2MnSi表面的自旋电子指纹与埋藏在高达4 nm MgO以下的Co2MnSi/MgO界面之间的高度一致性,为ELEPS对埋藏界面的高界面灵敏度提供了明确证据。尽管界面自旋极化的绝对值远低于100%,但现在可获取的自旋和对称性分辨波函数与Co2MnSi/MgO界面处非共线自旋矩的预测存在相符,这是解释基于赫斯勒合金的MTJ在室温下性能损失这一备受争议问题所引发的机制之一。