Suppr超能文献

高血糖对氯尼达明诱导的人黑色素瘤异种移植瘤酸化、能量耗竭及对美法仑敏感性的影响。

Effects of hyperglycemia on lonidamine-induced acidification and de-energization of human melanoma xenografts and sensitization to melphalan.

作者信息

Nath Kavindra, Nelson David S, Heitjan Daniel F, Zhou Rong, Leeper Dennis B, Glickson Jerry D

机构信息

Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

NMR Biomed. 2015 Mar;28(3):395-403. doi: 10.1002/nbm.3260.

Abstract

We seek to exploit the natural tendency of melanomas and other tumors to convert glucose to lactate as a method for the selective intracellular acidification of cancer cells and for the potentiation of the activity of nitrogen-mustard antineoplastic agents. We performed this study to evaluate whether the induction of hyperglycemia (26 mM) could enhance the effects of lonidamine (LND, 100 mg/kg; intraperitoneally) on the induction of intracellular acidification, bioenergetic decline and potentiation of the activity of melphalan (LPAM) against DB-1 melanoma xenografts in mice. Intracellular pH (pHi ), extracellular pH (pHe ) and bioenergetics (β-nucleoside triphosphate to inorganic phosphate ratio, β-NTP/Pi) were reduced by 0.7 units (p < 0.001), 0.3 units (p > 0.05) and 51.4% (p < 0.05), respectively. The therapeutic response to LPAM (7.5 mg/kg; intravenously) + LND (100 mg/kg; intraperitoneally) was reduced by about a factor of three under hyperglycemic conditions relative to normoglycemia, producing a growth delay of 7.76 days (tumor doubling time, 5.31 days; cell kill, 64%) compared with LND alone of 1.70 days and LPAM alone of 0.29 days. Under normoglycemic conditions, LND plus LPAM produced a growth delay of 17.75 days, corresponding to a cell kill of 90% at the same dose for each of these agents. The decrease in tumor cell kill under hyperglycemic conditions correlates with an increase in tumor ATP levels resulting from increased glycolytic activity. However, hyperglycemia substantially increases lactic acid production in tumors by a factor of approximately six (p < 0.05), but hyperglycemia did not increase the effects of LND on acidification of the tumor, most probably because of the strong buffering action of carbon dioxide (the pKa of carbonic acid is 6.4). Therefore, this study demonstrates that the addition of glucose during treatment with LND diminishes the activity of this agent.

摘要

我们试图利用黑色素瘤和其他肿瘤将葡萄糖转化为乳酸的自然倾向,作为一种使癌细胞选择性细胞内酸化并增强氮芥类抗肿瘤药物活性的方法。我们开展这项研究,以评估高血糖(26 mM)的诱导是否能增强氯尼达明(LND,100 mg/kg;腹腔注射)对细胞内酸化诱导、生物能量下降以及美法仑(LPAM)对小鼠DB-1黑色素瘤异种移植瘤活性增强的影响。细胞内pH(pHi)、细胞外pH(pHe)和生物能量学(β-核苷三磷酸与无机磷酸的比率,β-NTP/Pi)分别降低了0.7个单位(p < 0.001)、0.3个单位(p > 0.05)和51.4%(p < 0.05)。相对于正常血糖情况,在高血糖条件下,对LPAM(7.5 mg/kg;静脉注射)+ LND(100 mg/kg;腹腔注射)的治疗反应降低了约三倍,与单独使用LND时的1.70天和单独使用LPAM时的0.29天相比,产生了7.76天的生长延迟(肿瘤倍增时间为5.31天;细胞杀伤率为64%)。在正常血糖条件下,LND加LPAM产生了17.75天的生长延迟,对应于相同剂量下每种药物90%的细胞杀伤率。高血糖条件下肿瘤细胞杀伤率的降低与糖酵解活性增加导致的肿瘤ATP水平升高相关。然而,高血糖使肿瘤中乳酸生成量大幅增加了约六倍(p < 0.05),但高血糖并未增强LND对肿瘤酸化的作用,很可能是由于二氧化碳的强大缓冲作用(碳酸的pKa为6.4)。因此,本研究表明,在使用LND治疗期间添加葡萄糖会降低该药物的活性。

相似文献

8
Thermal sensitisation by lonidamine of human melanoma cells grown at low extracellular pH.
Int J Hyperthermia. 2014 Feb;30(1):75-8. doi: 10.3109/02656736.2013.858832. Epub 2013 Dec 3.
10
Mechanism of antineoplastic activity of lonidamine.
Biochim Biophys Acta. 2016 Dec;1866(2):151-162. doi: 10.1016/j.bbcan.2016.08.001. Epub 2016 Aug 4.

引用本文的文献

1
Metabolic Energy is Stored in a Homeostatic Trans-Membrane Water Barochemical Gradient.
J Membr Biol. 2025 Apr;258(2):135-160. doi: 10.1007/s00232-024-00332-1. Epub 2025 Feb 26.
4
Exploring monocarboxylate transporter inhibition for cancer treatment.
Explor Target Antitumor Ther. 2024;5(1):135-169. doi: 10.37349/etat.2024.00210. Epub 2024 Feb 23.
6
The Potential of Lonidamine in Combination with Chemotherapy and Physical Therapy in Cancer Treatment.
Cancers (Basel). 2020 Nov 11;12(11):3332. doi: 10.3390/cancers12113332.
8
Optical Redox Imaging of Lonidamine Treatment Response of Melanoma Cells and Xenografts.
Mol Imaging Biol. 2019 Jun;21(3):426-435. doi: 10.1007/s11307-018-1258-z.
9
Effect of Lonidamine on Systemic Therapy of DB-1 Human Melanoma Xenografts with Temozolomide.
Anticancer Res. 2017 Jul;37(7):3413-3421. doi: 10.21873/anticanres.11708.
10
Cancer cell behaviors mediated by dysregulated pH dynamics at a glance.
J Cell Sci. 2017 Feb 15;130(4):663-669. doi: 10.1242/jcs.195297.

本文引用的文献

2
Metabolic network analysis of DB1 melanoma cells: how much energy is derived from aerobic glycolysis?
Adv Exp Med Biol. 2013;765:265-271. doi: 10.1007/978-1-4614-4989-8_37.
4
Inhibition of mutated, activated BRAF in metastatic melanoma.
N Engl J Med. 2010 Aug 26;363(9):809-19. doi: 10.1056/NEJMoa1002011.
5
Improved survival with ipilimumab in patients with metastatic melanoma.
N Engl J Med. 2010 Aug 19;363(8):711-23. doi: 10.1056/NEJMoa1003466. Epub 2010 Jun 5.
7
Cancer regression in patients after transfer of genetically engineered lymphocytes.
Science. 2006 Oct 6;314(5796):126-9. doi: 10.1126/science.1129003. Epub 2006 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验