Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
Front Neuroendocrinol. 2015 Jul;38:50-64. doi: 10.1016/j.yfrne.2015.02.001. Epub 2015 Feb 20.
The circadian timing system orchestrates daily variations in physiology and behavior through coordination of multioscillatory cell networks that are highly plastic in responding to environmental changes. Over the last decade, it has become clear that this plasticity involves structural changes and that the changes may be observed not only in central brain regions where the master clock cells reside but also in clock-controlled structures. This review considers experimental data in invertebrate and vertebrate model systems, mainly flies and mammals, illustrating various forms of structural circadian plasticity from cellular to circuit-based levels. It highlights the importance of these plastic events in the functional adaptation of the clock to the changing environment.
昼夜节律计时系统通过协调对环境变化高度敏感的多振荡细胞网络,来调控生理和行为的日常变化。在过去的十年中,很明显这种可塑性涉及结构变化,而且这种变化不仅可以观察到中枢脑区(主钟细胞所在的区域),也可以观察到时钟控制结构中。本文综述了无脊椎动物和脊椎动物模型系统(主要是果蝇和哺乳动物)的实验数据,说明了从细胞到基于电路的各级别的各种形式的结构昼夜节律可塑性。它强调了这些可塑性事件在时钟适应不断变化的环境的功能适应中的重要性。