Suppr超能文献

MoDock:一种多目标策略提高了分子对接的准确性。

MoDock: A multi-objective strategy improves the accuracy for molecular docking.

作者信息

Gu Junfeng, Yang Xu, Kang Ling, Wu Jinying, Wang Xicheng

机构信息

State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116023 China.

Department of Computer Science and Technology, Dalian Neusoft Institute of Information, Dalian, 116023 China.

出版信息

Algorithms Mol Biol. 2015 Feb 18;10:8. doi: 10.1186/s13015-015-0034-8. eCollection 2015.

Abstract

BACKGROUND

As a main method of structure-based virtual screening, molecular docking is the most widely used in practice. However, the non-ideal efficacy of scoring functions is thought as the biggest barrier which hinders the improvement of the molecular docking method.

RESULTS

A new multi-objective strategy for molecular docking, named as MoDock, is presented to further improve the docking accuracy with available scoring functions. Instead of simple combination of multiple objectives with fixed weight factors, an aggregate function is adopted to approximate the real solution of the original multi-objective and multi-constraint problem, which will simultaneously smooth the energy surface of the combined scoring functions. Then, method of centers and genetic algorithm are used to find the optimal solution. Tests of MoDock against the GOLD test data set reveal the multi-objective strategy improves the docking accuracy over the individual scoring functions. Meanwhile, a 70% ratio of the good docking solutions with the RMSD value below 1.0 Å outperforms other 6 commonly used docking programs, even with a flexible receptor docking program included.

CONCLUSIONS

The results show MoDock is an effective strategy to overcome the deviations brought by single scoring function, and improves the prediction power of molecular docking.

摘要

背景

作为基于结构的虚拟筛选的主要方法,分子对接在实际应用中最为广泛。然而,评分函数的不理想效果被认为是阻碍分子对接方法改进的最大障碍。

结果

提出了一种新的分子对接多目标策略,称为MoDock,以利用现有评分函数进一步提高对接准确性。采用聚合函数而非简单地将多个目标与固定权重因子相结合,来近似原始多目标多约束问题的真实解,这将同时平滑组合评分函数的能量表面。然后,使用中心法和遗传算法来寻找最优解。针对GOLD测试数据集对MoDock进行的测试表明,多目标策略比单个评分函数提高了对接准确性。同时,70%的对接良好解决方案的RMSD值低于1.0 Å,优于其他6个常用对接程序,甚至包括一个柔性受体对接程序。

结论

结果表明MoDock是克服单一评分函数带来的偏差的有效策略,并提高了分子对接的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e3/4336518/4b0d192de553/13015_2015_34_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验