IEEE Trans Image Process. 2015 Apr;24(4):1302-14. doi: 10.1109/TIP.2015.2400217.
Texts in natural scenes carry critical semantic clues for understanding images. When capturing natural scene images, especially by handheld cameras, a common artifact, i.e., blur, frequently happens. To improve the visual quality of such images, deblurring techniques are desired, which also play an important role in character recognition and image understanding. In this paper, we study the problem of recovering the clear scene text by exploiting the text field characteristics. A series of text-specific multiscale dictionaries (TMD) and a natural scene dictionary is learned for separately modeling the priors on the text and nontext fields. The TMD-based text field reconstruction helps to deal with the different scales of strings in a blurry image effectively. Furthermore, an adaptive version of nonuniform deblurring method is proposed to efficiently solve the real-world spatially varying problem. Dictionary learning allows more flexible modeling with respect to the text field property, and the combination with the nonuniform method is more appropriate in real situations where blur kernel sizes are depth dependent. Experimental results show that the proposed method achieves the deblurring results with better visual quality than the state-of-the-art methods.
自然场景中的文本携带着理解图像的关键语义线索。在拍摄自然场景图像时,尤其是使用手持相机时,常见的伪影是模糊。为了提高此类图像的视觉质量,需要去模糊技术,它在字符识别和图像理解中也起着重要作用。在本文中,我们通过利用文本区域特征研究了恢复清晰场景文本的问题。学习了一系列特定于文本的多尺度字典(TMD)和自然场景字典,用于分别对文本区域和非文本区域的先验概率进行建模。基于 TMD 的文本区域重建有助于有效地处理模糊图像中不同尺度的字符串。此外,还提出了一种自适应的非均匀去模糊方法来有效地解决现实世界中空间变化的问题。字典学习允许对文本区域特性进行更灵活的建模,并且在模糊核大小随深度变化的实际情况下,与非均匀方法相结合更为合适。实验结果表明,与最先进的方法相比,所提出的方法能够获得具有更好视觉质量的去模糊结果。