Fang Xianyong, Zhou Qiang, Shen Jianbing, Jacquemin Christian, Shao Ling
IEEE Trans Cybern. 2020 Mar;50(3):997-1008. doi: 10.1109/TCYB.2018.2876511. Epub 2018 Nov 5.
Previous methods on text image motion deblurring seldom consider the sparse characteristics of the blur kernel. This paper proposes a new text image motion deblurring method by exploiting the sparse properties of both text image itself and kernel. It incorporates the L -norm for regularizing the blur kernel in the deblurring model, besides the L sparse priors for the text image and its gradient. Such a L -norm-based model is efficiently optimized by half-quadratic splitting coupled with the fast conjugate descent method. To further improve the quality of the recovered kernel, a structure-preserving kernel denoising method is also developed to filter out the noisy pixels, yielding a clean kernel curve. Experimental results show the superiority of the proposed method. The source code and results are available at: https://github.com/shenjianbing/text-image-deblur.
以往的文本图像运动去模糊方法很少考虑模糊核的稀疏特性。本文提出了一种新的文本图像运动去模糊方法,该方法利用了文本图像本身和核的稀疏特性。除了文本图像及其梯度的L 稀疏先验外,它还将L 范数纳入去模糊模型中以对模糊核进行正则化。通过结合快速共轭下降法的半二次分裂有效地优化了这种基于L 范数的模型。为了进一步提高恢复核的质量,还开发了一种结构保持核去噪方法来滤除噪声像素,得到一条干净的核曲线。实验结果表明了该方法的优越性。源代码和结果可在以下网址获取:https://github.com/shenjianbing/text-image-deblur 。