Suppr超能文献

面部表情识别与检测优势之间的分离:一项元分析。

Dissociation between recognition and detection advantage for facial expressions: a meta-analysis.

作者信息

Nummenmaa Lauri, Calvo Manuel G

机构信息

Department of Neuroscience and Biomedical Engineering.

Department of Cognitive Psychology, University of La Laguna.

出版信息

Emotion. 2015 Apr;15(2):243-56. doi: 10.1037/emo0000042. Epub 2015 Feb 23.

Abstract

Happy facial expressions are recognized faster and more accurately than other expressions in categorization tasks, whereas detection in visual search tasks is widely believed to be faster for angry than happy faces. We used meta-analytic techniques for resolving this categorization versus detection advantage discrepancy for positive versus negative facial expressions. Effect sizes were computed on the basis of the r statistic for a total of 34 recognition studies with 3,561 participants and 37 visual search studies with 2,455 participants, yielding a total of 41 effect sizes for recognition accuracy, 25 for recognition speed, and 125 for visual search speed. Random effects meta-analysis was conducted to estimate effect sizes at population level. For recognition tasks, an advantage in recognition accuracy and speed for happy expressions was found for all stimulus types. In contrast, for visual search tasks, moderator analysis revealed that a happy face detection advantage was restricted to photographic faces, whereas a clear angry face advantage was found for schematic and "smiley" faces. Robust detection advantage for nonhappy faces was observed even when stimulus emotionality was distorted by inversion or rearrangement of the facial features, suggesting that visual features primarily drive the search. We conclude that the recognition advantage for happy faces is a genuine phenomenon related to processing of facial expression category and affective valence. In contrast, detection advantages toward either happy (photographic stimuli) or nonhappy (schematic) faces is contingent on visual stimulus features rather than facial expression, and may not involve categorical or affective processing.

摘要

在分类任务中,快乐的面部表情比其他表情能更快、更准确地被识别,而在视觉搜索任务中,人们普遍认为愤怒的面孔比快乐的面孔被检测到的速度更快。我们使用元分析技术来解决积极与消极面部表情在分类与检测优势上的差异。基于r统计量计算效应量,共有34项涉及3561名参与者的识别研究和37项涉及2455名参与者的视觉搜索研究,得出了41个关于识别准确性的效应量、25个关于识别速度的效应量以及125个关于视觉搜索速度的效应量。进行随机效应元分析以估计总体水平上的效应量。对于识别任务,在所有刺激类型中都发现快乐的表情在识别准确性和速度上具有优势。相比之下,对于视觉搜索任务,调节分析表明快乐的面孔检测优势仅限于照片面孔,而对于示意图面孔和“笑脸”面孔则发现明显的愤怒面孔优势。即使面部特征的倒置或重新排列使刺激的情绪性发生扭曲,仍观察到非快乐面孔具有强大的检测优势,这表明视觉特征主要驱动搜索。我们得出结论,快乐的面孔在识别上的优势是一种与面部表情类别和情感效价处理相关的真实现象。相比之下,对快乐(照片刺激)或非快乐(示意图)面孔的检测优势取决于视觉刺激特征而非面部表情,并且可能不涉及类别或情感处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验