Suppr超能文献

基于耦合隐马尔可夫模型的呼吸暂停心动过缓检测方法。

Coupled Hidden Markov Model-Based Method for Apnea Bradycardia Detection.

出版信息

IEEE J Biomed Health Inform. 2016 Mar;20(2):527-38. doi: 10.1109/JBHI.2015.2405075. Epub 2015 Feb 20.

Abstract

In this paper, we present a novel framework for the coupled hidden Markov model (CHMM), based on the forward and backward recursions and conditional probabilities, given a multidimensional observation. In the proposed framework, the interdependencies of states networks are modeled with Markovian-like transition laws that influence the evolution of hidden states in all channels. Moreover, an offline inference approach by maximum likelihood estimation is proposed for the learning procedure of model parameters. To evaluate its performance, we first apply the CHMM model to classify and detect disturbances using synthetic data generated by the FitzHugh-Nagumo model. The average sensitivity and specificity of the classification are above 93.98% and 95.38% and those of the detection reach 94.49% and 99.34%, respectively. The method is also evaluated using a clinical database composed of annotated physiological signal recordings of neonates suffering from apnea-bradycardia. Different combinations of beat-to-beat features extracted from electrocardiographic signals constitute the multidimensional observations for which the proposed CHMM model is applied, to detect each apnea bradycardia episode. The proposed approach is finally compared to other previously proposed HMM-based detection methods. Our CHMM provides the best performance on this clinical database, presenting an average sensitivity of 95.74% and specificity of 91.88% while it reduces the detection delay by -0.59 s.

摘要

在本文中,我们提出了一种新的耦合隐马尔可夫模型(CHMM)框架,该框架基于前向和后向递归以及给定多维观测值的条件概率。在所提出的框架中,状态网络的相关性通过类似于马尔可夫的转移律进行建模,这些转移律影响所有通道中隐藏状态的演变。此外,还提出了一种基于最大似然估计的离线推断方法来学习模型参数。为了评估其性能,我们首先将 CHMM 模型应用于使用 FitzHugh-Nagumo 模型生成的合成数据进行分类和检测干扰。分类的平均灵敏度和特异性均高于 93.98%和 95.38%,检测的平均灵敏度和特异性分别达到 94.49%和 99.34%。该方法还使用由患有呼吸暂停-心动过缓的新生儿注释生理信号记录组成的临床数据库进行了评估。从心电图信号中提取的逐拍特征的不同组合构成了多维观测值,应用所提出的 CHMM 模型来检测每个呼吸暂停心动过缓事件。最后,将所提出的方法与其他先前提出的基于 HMM 的检测方法进行了比较。我们的 CHMM 在该临床数据库上提供了最佳性能,平均灵敏度为 95.74%,特异性为 91.88%,同时将检测延迟降低了 0.59 秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验