Suppr超能文献

使用深度卷积神经网络-长短期记忆模型自动检测阻塞性睡眠呼吸暂停事件

Automatic Detection of Obstructive Sleep Apnea Events Using a Deep CNN-LSTM Model.

作者信息

Zhang Junming, Tang Zhen, Gao Jinfeng, Lin Li, Liu Zhiliang, Wu Haitao, Liu Fang, Yao Ruxian

机构信息

College of Information Engineering, Huanghuai University, Zhumadian, Henan 463000, China.

Henan Key Laboratory of Smart Lighting, Zhumadian, Henan 463000, China.

出版信息

Comput Intell Neurosci. 2021 Mar 22;2021:5594733. doi: 10.1155/2021/5594733. eCollection 2021.

Abstract

Obstructive sleep apnea (OSA) is a common sleep-related respiratory disorder. Around the world, more and more people are suffering from OSA. Because of the limitation of monitor equipment, many people with OSA remain undetected. Therefore, we propose a sleep-monitoring model based on single-channel electrocardiogram using a convolutional neural network (CNN), which can be used in portable OSA monitor devices. To learn different scale features, the first convolution layer comprises three types of filters. The long short-term memory (LSTM) is used to learn the long-term dependencies such as the OSA transition rules. The softmax function is connected to the final fully connected layer to obtain the final decision. To detect a complete OSA event, the raw ECG signals are segmented by a 10 s overlapping sliding window. The proposed model is trained with the segmented raw signals and is subsequently tested to evaluate its event detection performance. According to experiment analysis, the proposed model exhibits Cohen's kappa coefficient of 0.92, a sensitivity of 96.1%, a specificity of 96.2%, and an accuracy of 96.1% with respect to the Apnea-ECG dataset. The proposed model is significantly higher than the results from the baseline method. The results prove that our approach could be a useful tool for detecting OSA on the basis of a single-lead ECG.

摘要

阻塞性睡眠呼吸暂停(OSA)是一种常见的与睡眠相关的呼吸系统疾病。在全球范围内,越来越多的人患有阻塞性睡眠呼吸暂停。由于监测设备的限制,许多阻塞性睡眠呼吸暂停患者仍未被发现。因此,我们提出了一种基于单通道心电图的睡眠监测模型,该模型使用卷积神经网络(CNN),可用于便携式阻塞性睡眠呼吸暂停监测设备。为了学习不同尺度的特征,第一个卷积层包含三种类型的滤波器。长短期记忆(LSTM)用于学习长期依赖性,如阻塞性睡眠呼吸暂停的转变规则。softmax函数连接到最终的全连接层以获得最终决策。为了检测完整的阻塞性睡眠呼吸暂停事件,原始心电图信号通过10秒重叠滑动窗口进行分割。所提出的模型使用分割后的原始信号进行训练,随后进行测试以评估其事件检测性能。根据实验分析,所提出的模型在呼吸暂停-心电图数据集上的Cohen's kappa系数为0.92,灵敏度为96.1%,特异性为96.2%,准确率为96.1%。所提出的模型明显高于基线方法的结果。结果证明,我们的方法可能是一种基于单导联心电图检测阻塞性睡眠呼吸暂停的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8c1/8009718/b40621643b82/CIN2021-5594733.009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验