Özdemir Burcin, Huang Wenting, Plettl Alfred, Ziemann Paul
Institute of Solid State Physics, Ulm University, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
Nanotechnology. 2015 Mar 20;26(11):115301. doi: 10.1088/0957-4484/26/11/115301. Epub 2015 Feb 24.
A consecutive fabrication approach of independently tailored gradients of the topographical parameters distance, diameter and height in arrays of well-ordered nanopillars on smooth SiO2-Si-wafers is presented. For this purpose, previously reported preparation techniques are further developed and combined. First, self-assembly of Au-salt loaded micelles by dip-coating with computer-controlled pulling-out velocities and subsequent hydrogen plasma treatment produce quasi-hexagonally ordered, 2-dimensional arrays of Au nanoparticles (NPs) with unidirectional variations of the interparticle distances along the pulling direction between 50-120 nm. Second, the distance (or areal density) gradient profile received in this way is superimposed with a diameter-controlled gradient profile of the NPs applying a selective photochemical growth technique. For demonstration, a 1D shutter is used for locally defined UV exposure times to prepare Au NP size gradients varying between 12 and 30 nm. Third, these double-gradient NP arrangements serve as etching masks in a following reactive ion etching step delivering arrays of nanopillars. For height gradient generation, the etching time is locally controlled by applying a shutter made from Si wafer piece. Due to the high flexibility of the etching process, the preparation route works on various materials such as cover slips, silicon, silicon oxide, silicon nitride and silicon carbide.
本文提出了一种连续制造方法,用于在光滑的SiO₂ - Si晶圆上的有序纳米柱阵列中独立定制形貌参数(距离、直径和高度)的梯度。为此,对先前报道的制备技术进行了进一步开发和组合。首先,通过以计算机控制的拉出速度进行浸涂,使负载金盐的胶束自组装,随后进行氢等离子体处理,从而产生准六边形有序的二维金纳米颗粒(NP)阵列,其颗粒间距离沿拉出方向在50 - 120 nm之间单向变化。其次,通过应用选择性光化学生长技术,将以此方式获得的距离(或面密度)梯度轮廓与NP的直径控制梯度轮廓叠加。为了进行演示,使用一维光闸来局部定义紫外线曝光时间,以制备尺寸在12至30 nm之间变化的金NP尺寸梯度。第三,这些双梯度NP排列在随后的反应离子蚀刻步骤中用作蚀刻掩膜,从而得到纳米柱阵列。为了产生高度梯度,通过应用由硅片制成的光闸来局部控制蚀刻时间。由于蚀刻工艺具有高度灵活性,该制备路线适用于各种材料,如盖玻片、硅、氧化硅、氮化硅和碳化硅。