Kobayashi T, Papaioannou G, Mirzamohammadi F, Kozhemyakina E, Zhang M, Blelloch R, Chong M W
Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
Osteoarthritis Cartilage. 2015 Jul;23(7):1214-20. doi: 10.1016/j.joca.2015.02.015. Epub 2015 Feb 21.
In growth plate chondrocytes, loss of Dicer, a microRNA (miRNA)-processing enzyme, causes defects in proliferation and differentiation, leading to a lethal skeletal dysplasia. However roles of miRNAs in articular chondrocytes have not been defined in vivo. To investigate the role of miRNAs in articular chondrocytes and to explore the possibility of generating a novel mouse osteoarthritis (OA) model caused by intrinsic cellular dysfunction, we ablated Drosha, another essential enzyme for miRNA biogenesis, exclusively in articular chondrocytes of postnatal mice.
First, to confirm that the essential role of miRNAs in skeletal development, we ablated the miRNA biogenesis pathway by deleting Drosha or DGCR8 in growth plate chondrocytes. Next, to investigate the role of miRNAs in articular cartilage, we deleted Drosha using Prg4-CreER(T) transgenic mice expressing a tamoxifen-activated Cre recombinase (CreER(T)) exclusively in articular chondrocytes. Tamoxifen was injected at postnatal days, 7, 14, 21, and 28 to ablate Drosha.
Deletion of Drosha or DGCR8 in growth plate chondrocytes caused a lethal skeletal defect similar to that of Dicer deletion, confirming the essential role of miRNAs in normal skeletogenesis. Early postnatal Drosha deletion in articular chondrocytes significantly increased cell death and decreased Safranin-O staining. Mild OA-like changes, including surface erosion and cleft formation, were found in male mice at 6 months of age; however such changes in females were not observed even at 9 months of age.
Early postnatal Drosha deficiency induces articular chondrocyte death and can cause a mild OA-like pathology.
在生长板软骨细胞中,微小RNA(miRNA)加工酶Dicer的缺失会导致增殖和分化缺陷,进而引发致死性骨骼发育不良。然而,miRNA在关节软骨细胞中的作用尚未在体内得到明确。为了研究miRNA在关节软骨细胞中的作用,并探索建立一种由内在细胞功能障碍引起的新型小鼠骨关节炎(OA)模型的可能性,我们专门在出生后小鼠的关节软骨细胞中敲除了Drosha,它是miRNA生物合成的另一种关键酶。
首先,为了证实miRNA在骨骼发育中的关键作用,我们通过在生长板软骨细胞中删除Drosha或DGCR8来阻断miRNA生物合成途径。接下来,为了研究miRNA在关节软骨中的作用,我们使用Prg4-CreER(T)转基因小鼠删除Drosha,该小鼠仅在关节软骨细胞中表达他莫昔芬激活的Cre重组酶(CreER(T))。在出生后第7、14、21和28天注射他莫昔芬以敲除Drosha。
生长板软骨细胞中Drosha或DGCR8的缺失导致了与Dicer缺失相似的致死性骨骼缺陷,证实了miRNA在正常骨骼发生中的关键作用。出生后早期在关节软骨细胞中删除Drosha显著增加了细胞死亡并减少了番红O染色。在6个月大的雄性小鼠中发现了轻度的OA样变化,包括表面侵蚀和裂隙形成;然而,即使在9个月大时,雌性小鼠中也未观察到此类变化。
出生后早期Drosha缺乏会诱导关节软骨细胞死亡,并可导致轻度的OA样病理变化。