Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (PR China), (Y. J. Wei).
ChemSusChem. 2015 Mar;8(6):1017-25. doi: 10.1002/cssc.201500027. Epub 2015 Feb 24.
A series of V2O5-based cathode materials that include V2O5 and Al0.14 V2O5 nanoparticles, V2O5/reduced graphene oxide (RGO), and Al0.16 V2O5/RGO nanocomposites are prepared by a simple soft chemical method. XRD and Raman scattering show that the Al ions reside in the interlayer space of the materials. These doping ions strengthen the V−O bonds of the [VO5] unit and enhance the linkage of the [VO5] layers, which thus increases the structural stability of V2O5. SEM and TEM images show that the V2O5 nanoparticles construct a hybrid structure with RGO that enables fast electron transport in the electrode matrix. The electrochemical properties of the materials are studied by charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Of all the materials tested, the one that contained both Al ions and RGO (Al0.16 V2O5/RGO) exhibited the highest discharge capacity, the best rate capability, and excellent capacity retention. The superior electrochemical performance is attributed to the synergetic effects of Al(3+) doping and RGO modification, which not only increase the structural stability of the V2O5 lattice but also improve the electrochemical kinetics of the material.
一系列基于 V2O5 的阴极材料,包括 V2O5 和 Al0.14 V2O5 纳米粒子、V2O5/还原氧化石墨烯(RGO)和 Al0.16 V2O5/RGO 纳米复合材料,通过简单的软化学方法制备而成。XRD 和拉曼散射表明 Al 离子位于材料的层间空间。这些掺杂离子增强了 [VO5] 单元的 V−O 键,并增强了 [VO5] 层的连接,从而提高了 V2O5 的结构稳定性。SEM 和 TEM 图像表明,V2O5 纳米颗粒与 RGO 构建了一种混合结构,使电极基质中的电子传输速度加快。通过充放电循环、循环伏安法和电化学阻抗谱研究了材料的电化学性能。在所测试的所有材料中,同时含有 Al 离子和 RGO(Al0.16 V2O5/RGO)的材料表现出最高的放电容量、最佳的倍率性能和优异的容量保持率。优异的电化学性能归因于 Al(3+) 掺杂和 RGO 改性的协同效应,这不仅增加了 V2O5 晶格的结构稳定性,而且改善了材料的电化学动力学。