Suppr超能文献

还原氧化石墨烯和五氧化二钒的介孔杂化材料,用于提高锂离子电池和电化学电容器的性能。

Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors.

机构信息

Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States.

Department of Grain Science and Industry, Kansas State University , Manhattan, Kansas 66506, United States.

出版信息

ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9200-10. doi: 10.1021/acsami.6b02372. Epub 2016 Apr 1.

Abstract

Mesoporous hybrids of V2O5 nanoparticles anchored on reduced graphene oxide (rGO) have been synthesized by slow hydrolysis of vanadium oxytriisopropoxide using a two-step solvothermal method followed by vacuum annealing. The hybrid material possesses a hierarchical structure with 20-30 nm V2O5 nanoparticles uniformly grown on rGO nanosheets, leading to a high surface area with mesoscale porosity. Such hybrid materials present significantly improved electronic conductivity and fast electrolyte ion diffusion, which synergistically enhance the electrical energy storage performance. Symmetrical electrochemical capacitors with two rGO-V2O5 hybrid electrodes show excellent cycling stability, good rate capability, and a high specific capacitance up to ∼466 F g(-1) (regarding the total mass of V2O5) in a neutral aqueous electrolyte (1.0 M Na2SO4). When used as the cathode in lithium-ion batteries, the rGO-V2O5 hybrid demonstrates excellent cycling stability and power capability, able to deliver a specific capacity of 295, 220, and 132 mAh g(-1) (regarding the mass of V2O5) at a rate of C/9, 1C, and 10C, respectively. The value at C/9 rate matches the full theoretical capacity of V2O5 for reversible 2 Li(+) insertion/extraction between 4.0 and 2.0 V (vs Li/Li(+)). It retains ∼83% of the discharge capacity after 150 cycles at 1C rate, with only 0.12% decrease per cycle. The enhanced performance in electrical energy storage reveals the effectiveness of rGO as the structure template and more conductive electron pathway in the hybrid material to overcome the intrinsic limits of single-phase V2O5 materials.

摘要

已通过两步溶剂热法随后进行真空退火,利用钒氧三异丙醇盐的缓慢水解合成了锚定在还原氧化石墨烯(rGO)上的 V2O5 纳米粒子的介孔杂化物。该杂化物具有分级结构,20-30nm 的 V2O5 纳米粒子均匀生长在 rGO 纳米片上,导致具有介孔多孔性的高表面积。这种杂化物表现出显著提高的电子电导率和快速电解质离子扩散,协同增强了电能存储性能。具有两个 rGO-V2O5 杂化电极的对称电化学电容器在中性水电解质(1.0M Na2SO4)中表现出优异的循环稳定性、良好的倍率性能和高达约 466F g-1(关于 V2O5 的总质量)的高比电容。当用作锂离子电池的阴极时,rGO-V2O5 杂化物表现出优异的循环稳定性和功率性能,能够以 C/9、1C 和 10C 的速率分别提供 295、220 和 132mAh g-1(关于 V2O5 的质量)的比容量。在 C/9 速率下的值与 V2O5 在 4.0 和 2.0V(相对于 Li/Li(+))之间可逆 2Li(+)插入/提取的全理论容量相匹配。在 1C 速率下循环 150 次后,其放电容量保留约 83%,每个循环仅下降 0.12%。在电能存储方面的增强性能表明,rGO 作为结构模板和杂化物中更具导电性的电子途径的有效性,克服了单相 V2O5 材料的固有限制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验