Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States.
Department of Grain Science and Industry, Kansas State University , Manhattan, Kansas 66506, United States.
ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9200-10. doi: 10.1021/acsami.6b02372. Epub 2016 Apr 1.
Mesoporous hybrids of V2O5 nanoparticles anchored on reduced graphene oxide (rGO) have been synthesized by slow hydrolysis of vanadium oxytriisopropoxide using a two-step solvothermal method followed by vacuum annealing. The hybrid material possesses a hierarchical structure with 20-30 nm V2O5 nanoparticles uniformly grown on rGO nanosheets, leading to a high surface area with mesoscale porosity. Such hybrid materials present significantly improved electronic conductivity and fast electrolyte ion diffusion, which synergistically enhance the electrical energy storage performance. Symmetrical electrochemical capacitors with two rGO-V2O5 hybrid electrodes show excellent cycling stability, good rate capability, and a high specific capacitance up to ∼466 F g(-1) (regarding the total mass of V2O5) in a neutral aqueous electrolyte (1.0 M Na2SO4). When used as the cathode in lithium-ion batteries, the rGO-V2O5 hybrid demonstrates excellent cycling stability and power capability, able to deliver a specific capacity of 295, 220, and 132 mAh g(-1) (regarding the mass of V2O5) at a rate of C/9, 1C, and 10C, respectively. The value at C/9 rate matches the full theoretical capacity of V2O5 for reversible 2 Li(+) insertion/extraction between 4.0 and 2.0 V (vs Li/Li(+)). It retains ∼83% of the discharge capacity after 150 cycles at 1C rate, with only 0.12% decrease per cycle. The enhanced performance in electrical energy storage reveals the effectiveness of rGO as the structure template and more conductive electron pathway in the hybrid material to overcome the intrinsic limits of single-phase V2O5 materials.
已通过两步溶剂热法随后进行真空退火,利用钒氧三异丙醇盐的缓慢水解合成了锚定在还原氧化石墨烯(rGO)上的 V2O5 纳米粒子的介孔杂化物。该杂化物具有分级结构,20-30nm 的 V2O5 纳米粒子均匀生长在 rGO 纳米片上,导致具有介孔多孔性的高表面积。这种杂化物表现出显著提高的电子电导率和快速电解质离子扩散,协同增强了电能存储性能。具有两个 rGO-V2O5 杂化电极的对称电化学电容器在中性水电解质(1.0M Na2SO4)中表现出优异的循环稳定性、良好的倍率性能和高达约 466F g-1(关于 V2O5 的总质量)的高比电容。当用作锂离子电池的阴极时,rGO-V2O5 杂化物表现出优异的循环稳定性和功率性能,能够以 C/9、1C 和 10C 的速率分别提供 295、220 和 132mAh g-1(关于 V2O5 的质量)的比容量。在 C/9 速率下的值与 V2O5 在 4.0 和 2.0V(相对于 Li/Li(+))之间可逆 2Li(+)插入/提取的全理论容量相匹配。在 1C 速率下循环 150 次后,其放电容量保留约 83%,每个循环仅下降 0.12%。在电能存储方面的增强性能表明,rGO 作为结构模板和杂化物中更具导电性的电子途径的有效性,克服了单相 V2O5 材料的固有限制。