Suppr超能文献

破坏并恢复着丝粒结合蛋白的疏水核心。

Breaking and restoring the hydrophobic core of a centromere-binding protein.

作者信息

Saeed Sadia, Jowitt Thomas A, Warwicker Jim, Hayes Finbarr

机构信息

From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom.

From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom

出版信息

J Biol Chem. 2015 Apr 3;290(14):9273-83. doi: 10.1074/jbc.M115.638148. Epub 2015 Feb 23.

Abstract

The ribbon-helix-helix (RHH) superfamily of DNA-binding proteins is dispersed widely in procaryotes. The dimeric RHH fold is generated by interlocking of two monomers into a 2-fold symmetrical structure that comprises four α-helices enwrapping a pair of antiparallel β-strands (ribbon). Residues in the ribbon region are the principal determinants of DNA binding, whereas the RHH hydrophobic core is assembled from amino acids in both the α-helices and ribbon element. The ParG protein encoded by multiresistance plasmid TP228 is a RHH protein that functions dually as a centromere binding factor during segrosome assembly and as a transcriptional repressor. Here we identify residues in the α-helices of ParG that are critical for DNA segregation and in organization of the protein hydrophobic core. A key hydrophobic aromatic amino acid at one position was functionally substitutable by other aromatic residues, but not by non-aromatic hydrophobic amino acids. Nevertheless, intramolecular suppression of the latter by complementary change of a residue that approaches nearby from the partner monomer fully restored activity in vivo and in vitro. The interactions involved in assembling the ParG core may be highly malleable and suggest that RHH proteins are tractable platforms for the rational design of diverse DNA binding factors useful for synthetic biology and other purposes.

摘要

DNA结合蛋白的带状-螺旋-螺旋(RHH)超家族广泛分布于原核生物中。二聚体RHH折叠是由两个单体互锁形成的2倍对称结构产生的,该结构包含四个α螺旋,环绕着一对反平行的β链(带状)。带状区域中的残基是DNA结合的主要决定因素,而RHH疏水核心则由α螺旋和带状元件中的氨基酸组装而成。多抗性质粒TP228编码的ParG蛋白是一种RHH蛋白,在分割体组装过程中作为着丝粒结合因子发挥双重作用,并作为转录阻遏物。在这里,我们确定了ParG的α螺旋中对DNA分离和蛋白质疏水核心组织至关重要的残基。一个位置上的关键疏水性芳香族氨基酸在功能上可被其他芳香族残基替代,但不能被非芳香族疏水性氨基酸替代。然而,通过来自伴侣单体附近的残基的互补变化对后者进行分子内抑制,在体内和体外都完全恢复了活性。组装ParG核心所涉及的相互作用可能具有高度的可塑性,这表明RHH蛋白是用于合理设计用于合成生物学和其他目的的多种DNA结合因子的易于处理的平台。

相似文献

1
Breaking and restoring the hydrophobic core of a centromere-binding protein.
J Biol Chem. 2015 Apr 3;290(14):9273-83. doi: 10.1074/jbc.M115.638148. Epub 2015 Feb 23.
2
Recruitment of the ParG segregation protein to different affinity DNA sites.
J Bacteriol. 2009 Jun;191(12):3832-41. doi: 10.1128/JB.01630-08. Epub 2009 Apr 17.
3
ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon-helix-helix structure.
Mol Microbiol. 2003 Nov;50(4):1141-53. doi: 10.1046/j.1365-2958.2003.03750.x.
4
Segrosome assembly at the pliable parH centromere.
Nucleic Acids Res. 2011 Jul;39(12):5082-97. doi: 10.1093/nar/gkr115. Epub 2011 Mar 4.
5
The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression.
J Biol Chem. 2005 Aug 5;280(31):28683-91. doi: 10.1074/jbc.M501173200. Epub 2005 Jun 12.
6
The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif.
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1811-6. doi: 10.1073/pnas.0607216104. Epub 2007 Jan 29.
7
Segrosome structure revealed by a complex of ParR with centromere DNA.
Nature. 2007 Dec 20;450(7173):1268-71. doi: 10.1038/nature06392.
8
DNA binding properties of protein TrwA, a possible structural variant of the Arc repressor superfamily.
Biochim Biophys Acta. 2004 Sep 1;1701(1-2):15-23. doi: 10.1016/j.bbapap.2004.05.009.
9
Crystal structure and centromere binding of the plasmid segregation protein ParB from pCXC100.
Nucleic Acids Res. 2011 Apr;39(7):2954-68. doi: 10.1093/nar/gkq915. Epub 2010 Dec 1.
10
Structural analysis of the ParR/parC plasmid partition complex.
EMBO J. 2007 Oct 17;26(20):4413-22. doi: 10.1038/sj.emboj.7601864. Epub 2007 Sep 27.

引用本文的文献

本文引用的文献

1
ParA-mediated plasmid partition driven by protein pattern self-organization.
EMBO J. 2013 May 2;32(9):1238-49. doi: 10.1038/emboj.2013.34. Epub 2013 Feb 26.
2
Uncoupling of nucleotide hydrolysis and polymerization in the ParA protein superfamily disrupts DNA segregation dynamics.
J Biol Chem. 2012 Dec 14;287(51):42545-53. doi: 10.1074/jbc.M112.410324. Epub 2012 Oct 23.
3
Structural mechanism of ATP-induced polymerization of the partition factor ParF: implications for DNA segregation.
J Biol Chem. 2012 Jul 27;287(31):26146-54. doi: 10.1074/jbc.M112.373696. Epub 2012 Jun 6.
4
Combinatorial targeting of ribbon-helix-helix artificial transcription factors to chimeric recognition sites.
Nucleic Acids Res. 2012 Aug;40(14):6673-82. doi: 10.1093/nar/gks314. Epub 2012 Apr 9.
5
Chromosome segregation in Archaea mediated by a hybrid DNA partition machine.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3754-9. doi: 10.1073/pnas.1113384109. Epub 2012 Feb 21.
6
Bacterial plasmid partition machinery: a minimalist approach to survival.
Curr Opin Struct Biol. 2012 Feb;22(1):72-9. doi: 10.1016/j.sbi.2011.11.001. Epub 2011 Dec 6.
7
Filament depolymerization can explain chromosome pulling during bacterial mitosis.
PLoS Comput Biol. 2011 Sep;7(9):e1002145. doi: 10.1371/journal.pcbi.1002145. Epub 2011 Sep 22.
8
Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria.
Infect Immun. 2011 Jul;79(7):2502-9. doi: 10.1128/IAI.00127-11. Epub 2011 May 9.
9
Segrosome assembly at the pliable parH centromere.
Nucleic Acids Res. 2011 Jul;39(12):5082-97. doi: 10.1093/nar/gkr115. Epub 2011 Mar 4.
10
Mapping of the interactions between partition proteins Delta and Omega of plasmid pSM19035 from Streptococcus pyogenes.
Microbiology (Reading). 2011 Apr;157(Pt 4):1009-1020. doi: 10.1099/mic.0.045369-0. Epub 2011 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验