Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science and Engineering, Institute I, Martensstrasse 5, 91058 Erlangen, Germany
Philos Trans A Math Phys Eng Sci. 2015 Mar 28;373(2038). doi: 10.1098/rsta.2014.0132.
In this survey, the origin of fatigue crack initiation and damage evolution in different metallic materials is discussed with emphasis on the responsible microstructural mechanisms. After a historical introduction, the stages of cyclic deformation which precede the onset of fatigue damage are reviewed. Different types of cyclic slip irreversibilities in the bulk that eventually lead to the initiation of fatigue cracks are discussed. Examples of trans- and intercrystalline fatigue damage evolution in the low cycle, high cycle and ultrahigh cycle fatigue regimes in mono- and polycrystalline face-centred cubic and body-centred cubic metals and alloys and in different engineering materials are presented, and some microstructural models of fatigue crack initiation and early crack growth are discussed. The basic difficulties in defining the transition from the initiation to the growth of fatigue cracks are emphasized. In ultrahigh cycle fatigue at very low loading amplitudes, the initiation of fatigue cracks generally occupies a major fraction of fatigue life and is hence life controlling.
在这项调查中,讨论了不同金属材料中疲劳裂纹萌生和损伤演变的起源,重点是负责的微观结构机制。在历史介绍之后,回顾了疲劳损伤发生之前的循环变形阶段。讨论了在最终导致疲劳裂纹萌生的体内部循环滑移不可逆性的不同类型。在单晶和多晶面心立方和体心立方金属和合金以及不同工程材料的低周、高周和超高周疲劳区的穿晶和晶间疲劳损伤演变的例子,并讨论了疲劳裂纹萌生和早期裂纹扩展的一些微观结构模型。强调了定义疲劳裂纹萌生到扩展的转变的基本困难。在非常低的加载振幅下的超高周疲劳中,疲劳裂纹的萌生通常占据疲劳寿命的很大一部分,因此是寿命控制的。