Suppr超能文献

基于宏观尺度泵增强细胞操控动态响应的片上致动发射机。

On-chip actuation transmitter for enhancing the dynamic response of cell manipulation using a macro-scale pump.

机构信息

Department of Mechanical Engineering, Osaka University , Suita, Osaka 565-0871, Japan.

Department of Micro-Nano Systems Engineering, Nagoya University , Nagoya 464-8603, Japan.

出版信息

Biomicrofluidics. 2015 Feb 6;9(1):014114. doi: 10.1063/1.4907757. eCollection 2015 Jan.

Abstract

An on-chip actuation transmitter for achieving fast and accurate cell manipulation is proposed. Instead of manipulating cell position by a directly connected macro-scale pump, polydimethylsiloxane deformation is used as a medium to transmit the actuation generated from the pump to control the cell position. This actuation transmitter has three main advantages. First, the dynamic response of cell manipulation is faster than the conventional method with direct flow control based on both the theoretical modeling and experimental results. The cell can be manipulated in a simple harmonic motion up to 130 Hz by the proposed actuation transmitter as opposed to 90 Hz by direct flow control. Second, there is no need to fill the syringe pump with the sample solution because the actuation transmitter physically separates the fluids between the pump and the cell flow, and consequently, only a very small quantity of the sample is required (<1 μl). In addition, such fluid separation makes it easy to keep the experiment platform sterilized because there is no direct fluid exchange between the sample and fluid inside the pump. Third, the fabrication process is simple because of the single-layer design, making it convenient to implement the actuation transmitter in different microfluidic applications. The proposed actuation transmitter is implemented in a lab-on-a-chip system for red blood cell (RBC) evaluation, where the extensibility of red blood cells is evaluated by manipulating the cells through a constriction channel at a constant velocity. The application shows a successful example of implementing the proposed transmitter.

摘要

提出了一种用于实现快速准确细胞操纵的片上致动器传输器。该传输器不是通过直接连接的宏观尺度泵来操纵细胞位置,而是使用聚二甲基硅氧烷变形作为介质将泵产生的致动传递到控制细胞位置。该致动器传输器具有三个主要优点。首先,根据理论建模和实验结果,细胞操纵的动态响应比基于直接流量控制的传统方法更快。与直接流量控制的 90 Hz 相比,通过所提出的致动器传输器可以将细胞以简单的谐波运动操纵到 130 Hz。其次,由于致动器传输器在泵和细胞流动之间物理分离流体,因此无需将注射器泵充满样品溶液,因此只需要非常少量的样品(<1 μl)。此外,这种流体分离使得保持实验平台无菌变得容易,因为样品和泵内流体之间没有直接的流体交换。第三,由于采用单层设计,制造工艺简单,因此便于在不同的微流控应用中实现致动器传输器。所提出的致动器传输器在片上实验室系统中用于红细胞(RBC)评估,其中通过在恒定速度下通过收缩通道操纵细胞来评估红细胞的伸展性。该应用展示了实现所提出的传输器的成功示例。

相似文献

4
Microfluidic reflow pumps.微流体重流泵
Biomicrofluidics. 2015 Jul 9;9(4):044104. doi: 10.1063/1.4926583. eCollection 2015 Jul.
5
Permanent magnet actuation for magnetic bead-based DNA extraction.基于磁珠的 DNA 提取的永磁驱动。
Biomed Eng Online. 2018 Nov 6;17(Suppl 2):143. doi: 10.1186/s12938-018-0572-7.
9
On-chip pressure sensor using single-layer concentric chambers.采用单层同心腔的片上压力传感器。
Biomicrofluidics. 2016 Mar 31;10(2):024116. doi: 10.1063/1.4945412. eCollection 2016 Mar.
10
Liquid crystal pump.液晶泵。
Lab Chip. 2013 Jan 7;13(1):100-5. doi: 10.1039/c2lc40953d. Epub 2012 Oct 23.

本文引用的文献

8
Characterizing deformability and surface friction of cancer cells.表征癌细胞的变形性和表面摩擦。
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7580-5. doi: 10.1073/pnas.1218806110. Epub 2013 Apr 22.
9
Cell manipulation in microfluidics.微流控中的细胞操控。
Biofabrication. 2013 Jun;5(2):022001. doi: 10.1088/1758-5082/5/2/022001. Epub 2013 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验